Genital Transplants: Is Science Going Too Far, Too Fast?
Thanks to the remarkable evolution of organ transplantation, it's now possible to replace genitals that don't work properly or have been injured. Surgeons have been transplanting ovarian tissue for more than a decade, and they're now successfully transplanting penises and wombs too.
Rules and regulations aren't keeping up with the rapid rise of genital transplants.
Earlier this year, an American soldier whose genitals were injured by a bomb in Afghanistan received the first-ever transplant of a penis and scrotum at Johns Hopkins Medicine.
Rules and regulations aren't keeping up with the rapid rise of genital transplants, however, and there's no consensus about how society should handle a long list of difficult and delicate questions.
Are these expensive transplants worth the risk when other alternatives exist? Should men, famously obsessed with their penises, be able to ask for a better model simply because they want one? And what happens when transplant technology further muddles the concept of biological parenthood?
"We need to remember that the human body is not a machine with interchangeable parts," says bioethicist Craig M. Klugman of DePaul University. "These are complicated, difficult and potentially dangerous surgeries. And they require deep consideration on a physical, psychological, spiritual, and financial level."
From Extra Testicles to Replacement Penises
Tinkering with human genitalia -- especially the male variety -- is hardly a new phenomenon. A French surgeon created artificial penises for injured soldiers in the 16th century. And a bizarre implant craze swept the U.S. in the 1930s when a quack physician convinced men that, quite literally, the more testicles the merrier – and if the human variety wasn't available, then ones from goats would have to do.
Now we're more sophisticated. Modern genital transplants are designed to do two things: Treat infertility (in women) and restore the appearance and function of genitals (in men).
In women, surgeons have successfully transplanted ovarian tissue from one woman to another since the mid-2000s, when an Alabama woman gave birth after getting a transplant from her identical twin sister. Last year, for the first time in the U.S., a young woman gave birth after getting a uterus transplant from a living donor.
"Where do you draw the line? Is pregnancy a privilege? Is it a right?"
As for men, surgeons in the U.S. and South Africa have successfully transplanted penises from dead men into four men whose genitals were injured by a botched circumcision, penile cancer or a wartime injury. One man reportedly fathered a child after the procedure.
The Johns Hopkins procedure was the first to include a scrotum. Testicles, however, were not transplanted due to ethical concerns. Surgeons have successfully transplanted testicles from man-to-man in the past, but this procedure isn't performed because the testes would produce sperm with the donor's DNA. As a result, the recipient could father a baby who is genetically related to the donor.
Are Transplants Worth the Expense and Risk?
Genital transplants are not simple procedures. They're extremely expensive, with a uterus transplant estimated to cost as much as $250,000. They're dangerous, since patients typically must take powerful drugs to keep their immune systems from rejecting their new organs. And they're not medically necessary. All have alternatives that are much less risky and costly.
Dr. Hiten D. Patel, a urologist at Johns Hopkins University, believes these types of factors make penis transplants unnecessary. As he wrote in a 2018 commentary in the journal European Urology, "What in the world are we doing?"
There are similar questions about female genital transplants, which allow infertile women to become pregnant instead of turning to alternatives like adoption or surrogacy. "This is not a life-saving transplant. A woman can very well live without a uterus," says McGill University's Dr. Jacques Balayla, who studies uterine transplantation. "Where do you draw the line? Is pregnancy a privilege? Is it a right? You don't want to cause harm to an individual unless there's an absolute need for the procedure."
But Johns Hopkins urologist Dr. Arthur L. Burnett II, who served on the surgical team that performed the penis-and-scrotum procedure, says penis transplants can be appropriate when other alternatives – like a "neophallus" created from forearm skin and tissue – aren't feasible.
It's also important to "restore normalcy," he says. "We want someone to be able to have sense of male adequacy and a normal sense of bodily well-being on both physical and psychological levels."
Surgical team members who performed the penis transplant, including W. P. Andrew Lee, director of the department of plastic and reconstructive surgery, center.
As for the anonymous recipient, he's reportedly doing "very well" five months after the transplant. An update on Johns Hopkins' website states that "he has normal urinary functions and is beginning to regain sensation in the transplanted tissues."
When the Organ Donors Do It Live
Some peculiar messages reached Burnett's desk after his institution announced it would begin performing penis transplants. Several men wanted to donate their own organs. But for now, transplanted penises are only coming from dead donors whose next of kin have approved the donation.
Burnett doesn't expect live donors to enter the penis transplant picture. But there are no guidelines or policies to stop surgeons from transplanting a penis from a live donor or, for that matter, a testicle.
Live women have already donated wombs and ovarian tissue, forcing them to face their own risks from transplant surgery. "You're putting the donor at risk because she has to undergo pretty expensive surgery for a procedure that is not technically lifesaving," McGill University's Balayla says.
When it comes to uterus transplants, the risk spreads even beyond donor and recipient. Balayla notes there's a third person in the equation: The fetus. "Immunosuppressant medication may harm the baby, and you're feeding the baby with a [uterine] blood vessel that's not natural, held together by stitches," he says.
It's up to each medical institution that performs the procedures to set its own policies.
Bioethicists are talking about other issues raised by genital transplants: How should operations for transgender people fit in? Should men be able to get penis transplants for purely cosmetic reasons? And then there's the looming question of genetic parenthood.
It's up to each medical institution that performs the procedures to set its own policies.
Let's say a woman gets a transplant of ovarian tissue, a man gets a testicle transplant, and they have a baby the old-fashioned way.* The child would be genetically linked to the donors, not the parents who conceived him or her.
Call this a full-employment act not just for bioethicists but theologians too. "Catholicism is generally against reproductive technologies because it removes God from the nature of the procreative act. This technology, though, could result in conception through the natural act. Would their concern remain?" DePaul University's Klugman asked. "Judaism is concerned with knowing a child's parentage, would a child from transplanted testes be the child of the donor or the recipient? Would an act of coitus with a transplanted penis be adultery?"
Yikes. Maybe it's time for the medical field or the law to step in to determine what genital transplants surgeons can and can't -- or shouldn't -- do.
So far, however, only uterus transplants have guidelines in place. Otherwise, it's up to each medical institution that performs the procedures to set its own policies.
"I don't know if the medical establishment is in the position to do the best job of self-regulation," says Lisa Campo-Engelstein, a bioethicist with Albany Medical College. "Reproductive medicine in this country is a huge for-profit industry. There's a possibility of exploitation if we leave this to for-profit fertility companies."
And, as bioethicist Klugman notes, guidelines "aren't laws, and people can and do violate them with no effect."
He doesn't think laws are the solution to the ethical issues raised by genital transplants either. Still, he says, "we do need a national conversation on these topics to help provide guidance for doctors and patients."
[Correction: The following sentence has been updated: "Let's say a woman gets a transplant of ovarian tissue, a man gets a testicle transplant, and they have a baby the old-fashioned way." The original sentence mistakenly read "uterus transplant" instead of "ovarian tissue."]
New implants let paraplegics surf the web and play computer games
When I greeted Rodney Gorham, age 63, in an online chat session, he replied within seconds: “My pleasure.”
“Are you moving parts of your body as you type?” I asked.
This time, his response came about five minutes later: “I position the cursor with the eye tracking and select the same with moving my ankles.” Gorham, a former sales representative from Melbourne, Australia, living with amyotrophic lateral sclerosis, or ALS, a rare form of Lou Gehrig’s disease that impairs the brain’s nerve cells and the spinal cord, limiting the ability to move. ALS essentially “locks” a person inside their own body. Gorham is conversing with me by typing with his mind only–no fingers in between his brain and his computer.
The brain-computer interface enabling this feat is called the Stentrode. It's the brainchild of Synchron, a company backed by Amazon’s Jeff Bezos and Microsoft cofounder Bill Gates. After Gorham’s neurologist recommended that he try it, he became one of the first volunteers to have an 8mm stent, laced with small electrodes, implanted into his jugular vein and guided by a surgeon into a blood vessel near the part of his brain that controls movement.
After arriving at their destination, these tiny sensors can detect neural activity. They relay these messages through a small receiver implanted under the skin to a computer, which then translates the information into words. This minimally invasive surgery takes a day and is painless, according to Gorham. Recovery time is typically short, about two days.
When a paralyzed patient thinks about trying to move their arms or legs, the motor cortex will fire patterns that are specific to the patient’s thoughts.
When a paralyzed patient such as Gorham thinks about trying to move their arms or legs, the motor cortex will fire patterns that are specific to the patient’s thoughts. This pattern is detected by the Stentrode and relayed to a computer that learns to associate this pattern with the patient’s physical movements. The computer recognizes thoughts about kicking, making a fist and other movements as signals for clicking a mouse or pushing certain letters on a keyboard. An additional eye-tracking device controls the movement of the computer cursor.
The process works on a letter by letter basis. That’s why longer and more nuanced responses often involve some trial and error. “I have been using this for about two years, and I enjoy the sessions,” Gorham typed during our chat session. Zafar Faraz, field clinical engineer at Synchron, sat next to Gorham, providing help when required. Gorham had suffered without internet access, but now he looks forward to surfing the web and playing video games.
Gorham, age 63, has been enjoying Stentrode sessions for about two years.
Rodeny Dekker
The BCI revolution
In the summer of 2021, Synchron became the first company to receive the FDA’s Investigational Device Exemption, which allows research trials on the Stentrode in human patients. This past summer, the company, together with scientists from Icahn School of Medicine at Mount Sinai and the Neurology and Neurosurgery Department at Utrecht University, published a paper offering a framework for how to develop BCIs for patients with severe paralysis – those who can't use their upper limbs to type or use digital devices.
Three months ago, Synchron announced the enrollment of six patients in a study called COMMAND based in the U.S. The company will seek approval next year from the FDA to make the Stentrode available for sale commercially. Meanwhile, other companies are making progress in the field of BCIs. In August, Neuralink announced a $280 million financing round, the biggest fundraiser yet in the field. Last December, Synchron announced a $75 million financing round. “One thing I can promise you, in five years from now, we’re not going to be where we are today. We're going to be in a very different place,” says Elad I. Levy, professor of neurosurgery and radiology at State University of New York in Buffalo.
The risk of hacking exists, always. Cybercriminals, for example, might steal sensitive personal data for financial reasons, blackmailing, or to spread malware to other connected devices while extremist groups could potentially hack BCIs to manipulate individuals into supporting their causes or carrying out actions on their behalf.
“The prospect of bestowing individuals with paralysis a renewed avenue for communication and motor functionality is a step forward in neurotech,” says Hayley Nelson, a neuroscientist and founder of The Academy of Cognitive and Behavioral Neuroscience. “It is an exciting breakthrough in a world of devastating, scary diseases,” says Neil McArthur, a professor of philosophy and director of the Centre for Professional and Applied Ethics at the University of Manitoba. “To connect with the world when you are trapped inside your body is incredible.”
While the benefits for the paraplegic community are promising, the Stentrode’s long-term effectiveness and overall impact needs more research on safety. “Potential risks like inflammation, damage to neural tissue, or unexpected shifts in synaptic transmission due to the implant warrant thorough exploration,” Nelson says.
There are also concens about data privacy concerns and the policies of companies to safeguard information processed through BCIs. “Often, Big Tech is ahead of the regulators because the latter didn’t envisage such a turn of events...and companies take advantage of the lack of legal framework to push forward,” McArthur says. Hacking is another risk. Cybercriminals could steal sensitive personal data for financial reasons, blackmailing, or to spread malware to other connected devices. Extremist groups could potentially hack BCIs to manipulate individuals into supporting their causes or carrying out actions on their behalf.
“We have to protect patient identity, patient safety and patient integrity,” Levy says. “In the same way that we protect our phones or computers from hackers, we have to stay ahead with anti-hacking software.” Even so, Levy thinks the anticipated benefits for the quadriplegic community outweigh the potential risks. “We are on the precipice of an amazing technology. In the future, we would be able to connect patients to peripheral devices that enhance their quality of life.”
In the near future, the Stentrode could enable patients to use the Stentrode to activate their wheelchairs, iPods or voice modulators. Synchron's focus is on using its BCI to help patients with significant mobility restrictions—not to enhance the lives of healthy people without any illnesses. Levy says we are not prepared for the implications of endowing people with superpowers.
I wondered what Gorham thought about that. “Pardon my question, but do you feel like you have sort of transcended human nature, being the first in a big line of cybernetic people doing marvelous things with their mind only?” was my last question to Gorham.
A slight smile formed on his lips. In less than a minute, he typed: “I do a little.”
Leading XPRIZE Healthspan and Beating Negativity with Dr. Peter Diamandis
A new competition by the XPRIZE Foundation is offering $101 million to researchers who discover therapies that give a boost to people aged 65-80 so their bodies perform more like when they were middle-aged.
For today’s podcast episode, I talked with Dr. Peter Diamandis, XPRIZE’s founder and executive chairman. Under Peter’s leadership, XPRIZE has launched 27 previous competitions with over $300 million in prize purses. The latest contest aims to enhance healthspan, or the period of life when older people can play with their grandkids without any restriction, disability or disease. Such breakthroughs could help prevent chronic diseases that are closely linked to aging. These illnesses are costly to manage and threaten to overwhelm the healthcare system, as the number of Americans over age 65 is rising fast.
In this competition, called XPRIZE Healthspan, multiple awards are available, depending on what’s achieved, with support from the nonprofit Hevolution Foundation and Chip Wilson, the founder of Lululemon and nonprofit SOLVE FSHD. The biggest prize, $81 million, is for improvements in cognition, muscle and immunity by 20 years. An improvement of 15 years will net $71 million, and 10 years will net $61 million.
In our conversation for this episode, Peter talks about his plans for XPRIZE Healthspan and why exponential technologies make the current era - even with all of its challenges - the most exciting time in human history. We discuss the best mental outlook that supports a person in becoming truly innovative, as well as the downsides of too much risk aversion. We talk about how to overcome the negativity bias in ourselves and in mainstream media, how Peter has shifted his own mindset to become more positive over the years, how to inspire a culture of innovation, Peter’s personal recommendations for lifestyle strategies to live longer and healthier, the innovations we can expect in various fields by 2030, the future of education and the importance of democratizing tech and innovation.
In addition to Peter’s pioneering leadership of XPRIZE, he is also the Executive Founder of Singularity University. In 2014, he was named by Fortune as one of the “World’s 50 Greatest Leaders.” As an entrepreneur, he’s started over 25 companies in the areas of health-tech, space, venture capital and education. He’s Co-founder and Vice-Chairman of two public companies, Celularity and Vaxxinity, plus being Co-founder & Chairman of Fountain Life, a fully-integrated platform delivering predictive, preventative, personalized and data-driven health. He also serves as Co-founder of BOLD Capital Partners, a venture fund with a half-billion dollars under management being invested in exponential technologies and longevity companies. Peter is a New York Times Bestselling author of four books, noted during our conversation and in the show notes of this episode. He has degrees in molecular genetics and aerospace engineering from MIT and holds an M.D. from Harvard Medical School.
Show links
- Peter Diamandis bio
- New XPRIZE Healthspan
- Peter Diamandis books
- 27 XPRIZE competitions and counting
- Life Force by Peter Diamandis and Tony Robbins
- Peter Diamandis Twitter
- Longevity Insider newsletter – AI identifies the news
- Peter Diamandis Longevity Handbook
- Hevolution funding for longevity
XPRIZE Founder Peter Diamandis speaks with Mehmoud Khan, CEO of Hevolution Foundation, at the launch of XPRIZE Healthspan.
Hevolution Foundation