Genital Transplants: Is Science Going Too Far, Too Fast?
Thanks to the remarkable evolution of organ transplantation, it's now possible to replace genitals that don't work properly or have been injured. Surgeons have been transplanting ovarian tissue for more than a decade, and they're now successfully transplanting penises and wombs too.
Rules and regulations aren't keeping up with the rapid rise of genital transplants.
Earlier this year, an American soldier whose genitals were injured by a bomb in Afghanistan received the first-ever transplant of a penis and scrotum at Johns Hopkins Medicine.
Rules and regulations aren't keeping up with the rapid rise of genital transplants, however, and there's no consensus about how society should handle a long list of difficult and delicate questions.
Are these expensive transplants worth the risk when other alternatives exist? Should men, famously obsessed with their penises, be able to ask for a better model simply because they want one? And what happens when transplant technology further muddles the concept of biological parenthood?
"We need to remember that the human body is not a machine with interchangeable parts," says bioethicist Craig M. Klugman of DePaul University. "These are complicated, difficult and potentially dangerous surgeries. And they require deep consideration on a physical, psychological, spiritual, and financial level."
From Extra Testicles to Replacement Penises
Tinkering with human genitalia -- especially the male variety -- is hardly a new phenomenon. A French surgeon created artificial penises for injured soldiers in the 16th century. And a bizarre implant craze swept the U.S. in the 1930s when a quack physician convinced men that, quite literally, the more testicles the merrier – and if the human variety wasn't available, then ones from goats would have to do.
Now we're more sophisticated. Modern genital transplants are designed to do two things: Treat infertility (in women) and restore the appearance and function of genitals (in men).
In women, surgeons have successfully transplanted ovarian tissue from one woman to another since the mid-2000s, when an Alabama woman gave birth after getting a transplant from her identical twin sister. Last year, for the first time in the U.S., a young woman gave birth after getting a uterus transplant from a living donor.
"Where do you draw the line? Is pregnancy a privilege? Is it a right?"
As for men, surgeons in the U.S. and South Africa have successfully transplanted penises from dead men into four men whose genitals were injured by a botched circumcision, penile cancer or a wartime injury. One man reportedly fathered a child after the procedure.
The Johns Hopkins procedure was the first to include a scrotum. Testicles, however, were not transplanted due to ethical concerns. Surgeons have successfully transplanted testicles from man-to-man in the past, but this procedure isn't performed because the testes would produce sperm with the donor's DNA. As a result, the recipient could father a baby who is genetically related to the donor.
Are Transplants Worth the Expense and Risk?
Genital transplants are not simple procedures. They're extremely expensive, with a uterus transplant estimated to cost as much as $250,000. They're dangerous, since patients typically must take powerful drugs to keep their immune systems from rejecting their new organs. And they're not medically necessary. All have alternatives that are much less risky and costly.
Dr. Hiten D. Patel, a urologist at Johns Hopkins University, believes these types of factors make penis transplants unnecessary. As he wrote in a 2018 commentary in the journal European Urology, "What in the world are we doing?"
There are similar questions about female genital transplants, which allow infertile women to become pregnant instead of turning to alternatives like adoption or surrogacy. "This is not a life-saving transplant. A woman can very well live without a uterus," says McGill University's Dr. Jacques Balayla, who studies uterine transplantation. "Where do you draw the line? Is pregnancy a privilege? Is it a right? You don't want to cause harm to an individual unless there's an absolute need for the procedure."
But Johns Hopkins urologist Dr. Arthur L. Burnett II, who served on the surgical team that performed the penis-and-scrotum procedure, says penis transplants can be appropriate when other alternatives – like a "neophallus" created from forearm skin and tissue – aren't feasible.
It's also important to "restore normalcy," he says. "We want someone to be able to have sense of male adequacy and a normal sense of bodily well-being on both physical and psychological levels."
Surgical team members who performed the penis transplant, including W. P. Andrew Lee, director of the department of plastic and reconstructive surgery, center.
As for the anonymous recipient, he's reportedly doing "very well" five months after the transplant. An update on Johns Hopkins' website states that "he has normal urinary functions and is beginning to regain sensation in the transplanted tissues."
When the Organ Donors Do It Live
Some peculiar messages reached Burnett's desk after his institution announced it would begin performing penis transplants. Several men wanted to donate their own organs. But for now, transplanted penises are only coming from dead donors whose next of kin have approved the donation.
Burnett doesn't expect live donors to enter the penis transplant picture. But there are no guidelines or policies to stop surgeons from transplanting a penis from a live donor or, for that matter, a testicle.
Live women have already donated wombs and ovarian tissue, forcing them to face their own risks from transplant surgery. "You're putting the donor at risk because she has to undergo pretty expensive surgery for a procedure that is not technically lifesaving," McGill University's Balayla says.
When it comes to uterus transplants, the risk spreads even beyond donor and recipient. Balayla notes there's a third person in the equation: The fetus. "Immunosuppressant medication may harm the baby, and you're feeding the baby with a [uterine] blood vessel that's not natural, held together by stitches," he says.
It's up to each medical institution that performs the procedures to set its own policies.
Bioethicists are talking about other issues raised by genital transplants: How should operations for transgender people fit in? Should men be able to get penis transplants for purely cosmetic reasons? And then there's the looming question of genetic parenthood.
It's up to each medical institution that performs the procedures to set its own policies.
Let's say a woman gets a transplant of ovarian tissue, a man gets a testicle transplant, and they have a baby the old-fashioned way.* The child would be genetically linked to the donors, not the parents who conceived him or her.
Call this a full-employment act not just for bioethicists but theologians too. "Catholicism is generally against reproductive technologies because it removes God from the nature of the procreative act. This technology, though, could result in conception through the natural act. Would their concern remain?" DePaul University's Klugman asked. "Judaism is concerned with knowing a child's parentage, would a child from transplanted testes be the child of the donor or the recipient? Would an act of coitus with a transplanted penis be adultery?"
Yikes. Maybe it's time for the medical field or the law to step in to determine what genital transplants surgeons can and can't -- or shouldn't -- do.
So far, however, only uterus transplants have guidelines in place. Otherwise, it's up to each medical institution that performs the procedures to set its own policies.
"I don't know if the medical establishment is in the position to do the best job of self-regulation," says Lisa Campo-Engelstein, a bioethicist with Albany Medical College. "Reproductive medicine in this country is a huge for-profit industry. There's a possibility of exploitation if we leave this to for-profit fertility companies."
And, as bioethicist Klugman notes, guidelines "aren't laws, and people can and do violate them with no effect."
He doesn't think laws are the solution to the ethical issues raised by genital transplants either. Still, he says, "we do need a national conversation on these topics to help provide guidance for doctors and patients."
[Correction: The following sentence has been updated: "Let's say a woman gets a transplant of ovarian tissue, a man gets a testicle transplant, and they have a baby the old-fashioned way." The original sentence mistakenly read "uterus transplant" instead of "ovarian tissue."]
After spaceflight record, NASA looks to protect astronauts on even longer trips
At T-minus six seconds, the main engines of the Atlantis Space Shuttle ignited, rattling its capsule “like a skyscraper in an earthquake,” according to astronaut Tom Jones, describing the 1988 launch. As the rocket lifted off and accelerated to three times the force of Earth's gravity, “It felt as if two of my friends were standing on my chest and wouldn’t get off.” But when Atlantis reached orbit, the main engines cut off, and the astronauts were suddenly weightless.
Since 1961, NASA has sent hundreds of astronauts into space while working to making their voyages safer and smoother. Yet, challenges remain. Weightlessness may look amusing when watched from Earth, but it has myriad effects on cognition, movement and other functions. When missions to space stretch to six months or longer, microgravity can impact astronauts’ health and performance, making it more difficult to operate their spacecraft.
Yesterday, NASA astronaut Frank Rubio returned to Earth after over one year, the longest single spaceflight for a U.S. astronaut. But this is just the start; longer and more complex missions into deep space loom ahead, from returning to the moon in 2025 to eventually sending humans to Mars. To ensure that these missions succeed, NASA is increasing efforts to study the biological effects and prevent harm.
The dangers of microgravity are real
A NASA report published in 2016 details a long list of incidents and near-misses caused – at least partly – by space-induced changes in astronauts’ vision and coordination. These issues make it harder to move with precision and to judge distance and velocity.
According to the report, in 1997, a resupply ship collided with the Mir space station, possibly because a crew member bumped into the commander during the final docking maneuver. This mishap caused significant damage to the space station.
Returns to Earth suffered from problems, too. The same report notes that touchdown speeds during the first 100 space shuttle landings were “outside acceptable limits. The fastest landing on record – 224 knots (258 miles) per hour – was linked to the commander’s momentary spatial disorientation.” Earlier, each of the six Apollo crews that landed on the moon had difficulty recognizing moon landmarks and estimating distances. For example, Apollo 15 landed in an unplanned area, ultimately straddling the rim of a five-foot deep crater on the moon, harming one of its engines.
Spaceflight causes unique stresses on astronauts’ brains and central nervous systems. NASA is working to reduce these harmful effects.
NASA
Space messes up your brain
In space, astronauts face the challenges of microgravity, ionizing radiation, social isolation, high workloads, altered circadian rhythms, monotony, confined living quarters and a high-risk environment. Among these issues, microgravity is one of the most consequential in terms of physiological changes. It changes the brain’s structure and its functioning, which can hurt astronauts’ performance.
The brain shifts upwards within the skull, displacing the cerebrospinal fluid, which reduces the brain’s cushioning. Essentially, the brain becomes crowded inside the skull like a pair of too-tight shoes.
That’s partly because of how being in space alters blood flow. On Earth, gravity pulls our blood and other internal fluids toward our feet, but our circulatory valves ensure that the fluids are evenly distributed throughout the body. In space, there’s not enough gravity to pull the fluids down, and they shift up, says Rachael D. Seidler, a physiologist specializing in spaceflight at the University of Florida and principal investigator on many space-related studies. The head swells and legs appear thinner, causing what astronauts call “puffy face chicken legs.”
“The brain changes at the structural and functional level,” says Steven Jillings, equilibrium and aerospace researcher at the University of Antwerp in Belgium. “The brain shifts upwards within the skull,” displacing the cerebrospinal fluid, which reduces the brain’s cushioning. Essentially, the brain becomes crowded inside the skull like a pair of too-tight shoes. Some of the displaced cerebrospinal fluid goes into cavities within the brain, called ventricles, enlarging them. “The remaining fluids pool near the chest and heart,” explains Jillings. After 12 consecutive months in space, one astronaut had a ventricle that was 25 percent larger than before the mission.
Some changes reverse themselves while others persist for a while. An example of a longer-lasting problem is spaceflight-induced neuro-ocular syndrome, which results in near-sightedness and pressure inside the skull. A study of approximately 300 astronauts shows near-sightedness affects about 60 percent of astronauts after long missions on the International Space Station (ISS) and more than 25 percent after spaceflights of only a few weeks.
Another long-term change could be the decreased ability of cerebrospinal fluid to clear waste products from the brain, Seidler says. That’s because compressing the brain also compresses its waste-removing glymphatic pathways, resulting in inflammation, vulnerability to injuries and worsening its overall health.
The effects of long space missions were best demonstrated on astronaut twins Scott and Mark Kelly. This NASA Twins Study showed multiple, perhaps permanent, changes in Scott after his 340-day mission aboard the ISS, compared to Mark, who remained on Earth. The differences included declines in Scott’s speed, accuracy and cognitive abilities that persisted longer than six months after returning to Earth in March 2016.
By the end of 2020, Scott’s cognitive abilities improved, but structural and physiological changes to his eyes still remained, he said in a BBC interview.
“It seems clear that the upward shift of the brain and compression of the surrounding tissues with ventricular expansion might not be a good thing,” Seidler says. “But, at this point, the long-term consequences to brain health and human performance are not really known.”
NASA astronaut Kate Rubins conducts a session for the Neuromapping investigation.
NASA
Staying sharp in space
To investigate how prolonged space travel affects the brain, NASA launched a new initiative called the Complement of Integrated Protocols for Human Exploration Research (CIPHER). “CIPHER investigates how long-duration spaceflight affects both brain structure and function,” says neurobehavioral scientist Mathias Basner at the University of Pennsylvania, a principal investigator for several NASA studies. “Through it, we can find out how the brain adapts to the spaceflight environment and how certain brain regions (behave) differently after – relative to before – the mission.”
To do this, he says, “Astronauts will perform NASA’s cognition test battery before, during and after six- to 12-month missions, and will also perform the same test battery in an MRI scanner before and after the mission. We have to make sure we better understand the functional consequences of spaceflight on the human brain before we can send humans safely to the moon and, especially, to Mars.”
As we go deeper into space, astronauts cognitive and physical functions will be even more important. “A trip to Mars will take about one year…and will introduce long communication delays,” Seidler says. “If you are on that mission and have a problem, it may take eight to 10 minutes for your message to reach mission control, and another eight to 10 minutes for the response to get back to you.” In an emergency situation, that may be too late for the response to matter.
“On a mission to Mars, astronauts will be exposed to stressors for unprecedented amounts of time,” Basner says. To counter them, NASA is considering the continuous use of artificial gravity during the journey, and Seidler is studying whether artificial gravity can reduce the harmful effects of microgravity. Some scientists are looking at precision brain stimulation as a way to improve memory and reduce anxiety due to prolonged exposure to radiation in space.
Other scientists are exploring how to protect neural stem cells (which create brain cells) from radiation damage, developing drugs to repair damaged brain cells and protect cells from radiation.
To boldly go where no astronauts have gone before, they must have optimal reflexes, vision and decision-making. In the era of deep space exploration, the brain—without a doubt—is the final frontier.
Additionally, NASA is scrutinizing each aspect of the mission, including astronaut exercise, nutrition and intellectual engagement. “We need to give astronauts meaningful work. We need to stimulate their sensory, cognitive and other systems appropriately,” Basner says, especially given their extreme confinement and isolation. The scientific experiments performed on the ISS – like studying how microgravity affects the ability of tissue to regenerate is a good example.
“We need to keep them engaged socially, too,” he continues. The ISS crew, for example, regularly broadcasts from space and answers prerecorded questions from students on Earth, and can engage with social media in real time. And, despite tight quarters, NASA is ensuring the crew capsule and living quarters on the moon or Mars include private space, which is critical for good mental health.
Exploring deep space builds on a foundation that began when astronauts first left the planet. With each mission, scientists learn more about spaceflight effects on astronauts’ bodies. NASA will be using these lessons to succeed with its plans to build science stations on the moon and, eventually, Mars.
“Through internally and externally led research, investigations implemented in space and in spaceflight simulations on Earth, we are striving to reduce the likelihood and potential impacts of neurostructural changes in future, extended spaceflight,” summarizes NASA scientist Alexandra Whitmire. To boldly go where no astronauts have gone before, they must have optimal reflexes, vision and decision-making. In the era of deep space exploration, the brain—without a doubt—is the final frontier.
A newly discovered brain cell may lead to better treatments for cognitive disorders
Swiss researchers have discovered a third type of brain cell that appears to be a hybrid of the two other primary types — and it could lead to new treatments for many brain disorders.
The challenge: Most of the cells in the brain are either neurons or glial cells. While neurons use electrical and chemical signals to send messages to one another across small gaps called synapses, glial cells exist to support and protect neurons.
Astrocytes are a type of glial cell found near synapses. This close proximity to the place where brain signals are sent and received has led researchers to suspect that astrocytes might play an active role in the transmission of information inside the brain — a.k.a. “neurotransmission” — but no one has been able to prove the theory.
A new brain cell: Researchers at the Wyss Center for Bio and Neuroengineering and the University of Lausanne believe they’ve definitively proven that some astrocytes do actively participate in neurotransmission, making them a sort of hybrid of neurons and glial cells.
According to the researchers, this third type of brain cell, which they call a “glutamatergic astrocyte,” could offer a way to treat Alzheimer’s, Parkinson’s, and other disorders of the nervous system.
“Its discovery opens up immense research prospects,” said study co-director Andrea Volterra.
The study: Neurotransmission starts with a neuron releasing a chemical called a neurotransmitter, so the first thing the researchers did in their study was look at whether astrocytes can release the main neurotransmitter used by neurons: glutamate.
By analyzing astrocytes taken from the brains of mice, they discovered that certain astrocytes in the brain’s hippocampus did include the “molecular machinery” needed to excrete glutamate. They found evidence of the same machinery when they looked at datasets of human glial cells.
Finally, to demonstrate that these hybrid cells are actually playing a role in brain signaling, the researchers suppressed their ability to secrete glutamate in the brains of mice. This caused the rodents to experience memory problems.
“Our next studies will explore the potential protective role of this type of cell against memory impairment in Alzheimer’s disease, as well as its role in other regions and pathologies than those explored here,” said Andrea Volterra, University of Lausanne.
But why? The researchers aren’t sure why the brain needs glutamatergic astrocytes when it already has neurons, but Volterra suspects the hybrid brain cells may help with the distribution of signals — a single astrocyte can be in contact with thousands of synapses.
“Often, we have neuronal information that needs to spread to larger ensembles, and neurons are not very good for the coordination of this,” researcher Ludovic Telley told New Scientist.
Looking ahead: More research is needed to see how the new brain cell functions in people, but the discovery that it plays a role in memory in mice suggests it might be a worthwhile target for Alzheimer’s disease treatments.
The researchers also found evidence during their study that the cell might play a role in brain circuits linked to seizures and voluntary movements, meaning it’s also a new lead in the hunt for better epilepsy and Parkinson’s treatments.
“Our next studies will explore the potential protective role of this type of cell against memory impairment in Alzheimer’s disease, as well as its role in other regions and pathologies than those explored here,” said Volterra.