Genome Reading and Editing Tools for All
In 2006, the cover of Scientific American was "Know Your DNA" and the inside story was "Genomes for All." Today, we are closer to that goal than ever. Making it affordable for everyone to understand and change their DNA will fundamentally alter how we manage diseases, how we conduct clinical research, and even how we select a mate.
A frequent line of questions on the topic of making genome reading affordable is: Do we need to read the whole genome in order to accurately predict disease risk?
Since 2006, we have driven the cost of reading a human genome down from $3 billion to $600. To aid interpretation and research to produce new diagnostics and therapeutics, my research team at Harvard initiated the Personal Genome Project and later, Openhumans.org. This has demonstrated international informed consent for human genomes, and diverse environmental and trait data can be distributed freely. This is done with no strings attached in a manner analogous to Wikipedia. Cell lines from that project are similarly freely available for experiments on synthetic biology, gene therapy and human developmental biology. DNA from those cells have been chosen by the US National Institute of Standards and Technology and the Food and Drug Administration to be the key federal standards for the human genome.
A frequent line of questions on the topic of making genome reading affordable is: Do we need to read the whole genome in order to accurately predict disease risk? Can we just do most commonly varying parts of the genome, which constitute only a tiny fraction of a percent? Or just the most important parts encoding the proteins or 'exome,' which constitute about one percent of the genome? The commonly varying parts of the genome are poor predictors of serious genetic diseases and the exomes don't detect DNA rearrangements which often wipe out gene function when they occur in non-coding regions within genes. Since the cost of the exome is not one percent of the whole genome cost, but nearly identical ($600), missing an impactful category of mutants is really not worth it. So the answer is yes, we should read the whole genome to glean comprehensively meaningful information.
In parallel to the reading revolution, we have dropped the price of DNA synthesis by a similar million-fold and made genome editing tools close to free.
WRITING
In parallel to the reading revolution, we have dropped the price of DNA synthesis by a similar million-fold and made genome editing tools like CRISPR, TALE and MAGE close to free by distributing them through the non-profit Addgene.org. Gene therapies are already curing blindness in children and cancer in adults, and hopefully soon infectious diseases and hemoglobin diseases like sickle cell anemia. Nevertheless, gene therapies are (so far) the most expensive class of drugs in history (about $1 million dollars per dose).
This is in large part because the costs of proving safety and efficacy in a randomized clinical trial are high and that cost is spread out only over the people that benefit (aka the denominator). Striking growth is evident in such expensive hyper-personalized therapies ever since the "Orphan Drug Act of 1983." For the most common disease, aging (which kills 90 percent of people in wealthy regions of the world), the denominator is maximal and the cost of the drugs should be low as genetic interventions to combat aging become available in the next ten years. But what can we do about rarer diseases with cheap access to genome reading and editing tools? Try to prevent them in the first place.
A huge fraction of these births is preventable if unaffected carriers of such diseases do not mate.
ARITHMETIC
While the cost of reading has plummeted, the value of knowing your genome is higher than ever. About 5 percent of births result in extreme medical trauma over a person's lifetime due to rare genetic diseases. Even without gene therapy, these cost the family and society more than a million dollars in drugs, diagnostics and instruments, extra general care, loss of income for the affected individual and other family members, plus pain and anxiety of the "medical odyssey" often via dozens of mystified physicians. A huge fraction of these births is preventable if unaffected carriers of such diseases do not mate.
The non-profit genetic screening organization, Dor Yeshorim (established in 1983), has shown that this is feasible by testing for Tay–Sachs disease, Familial dysautonomia, Cystic fibrosis, Canavan disease, Glycogen storage disease (type 1), Fanconi anemia (type C), Bloom syndrome, Niemann–Pick disease, Mucolipidosis type IV. This is often done at the pre-marital, matchmaking phase, which can reduce the frequency of natural or induced abortions. Such matchmaking can be done in such a way that no one knows the carrier status of any individual in the system. In addition to those nine tests, many additional diseases can be picked up by whole genome sequencing. No person can know in advance that they are exempt from these risks.
Furthermore, concerns about rare "false positives" is far less at the stage of matchmaking than at the stage of prenatal testing, since the latter could involve termination of a healthy fetus, while the former just means that you restrict your dating to 90 percent of the population. In order to scale this up from 13 million Ashkenazim and Sephardim to billions in diverse cultures, we will likely see new computer security, encryption, blockchain and matchmaking tools.
Once the diseases are eradicated from our population, the interventions can be said to impact not only the current population, but all subsequent generations.
THE FUTURE
As reading and writing become exponentially more affordable and reliable, we can tackle equitable distribution, but there remain issues of education and security. Society, broadly (insurers, health care providers, governments) should be able to see a roughly 12-fold return on their investment of $1800 per person ($600 each for raw data, interpretation and incentivizing the participant) by saving $1 million per diseased child per 20 families. Everyone will have free access to their genome information and software to guide their choices in precision medicines, mates and participation in biomedical research studies.
In terms of writing and editing, if delivery efficiency and accuracy keep improving, then pill or aerosol formulations of gene therapies -- even non-prescription, veterinary or home-made versions -- are not inconceivable. Preventions tends to be more affordable and more humane than cures. If gene therapies provide prevention of diseases of aging, cancer and cognitive decline, they might be considered "enhancement," but not necessarily more remarkable than past preventative strategies, like vaccines against HPV-cancer, smallpox and polio. Whether we're overcoming an internal genetic flaw or an external infectious disease, the purpose is the same: to minimize human suffering. Once the diseases are eradicated from our population, the interventions can be said to impact not only the current population, but all subsequent generations. This reminds us that we need to listen carefully, educate each other and proactively imagine and deflect likely, and even unlikely, unintended consequences, including stigmatization of the last few unprotected individuals.
Last week, researchers at the University of Oxford announced that they have received funding to create a brand new way of preventing ovarian cancer: A vaccine. The vaccine, known as OvarianVax, will teach the immune system to recognize and destroy mutated cells—one of the earliest indicators of ovarian cancer.
Understanding Ovarian Cancer
Despite advancements in medical research and treatment protocols over the last few decades, ovarian cancer still poses a significant threat to women’s health. In the United States alone, more than 12,0000 women die of ovarian cancer each year, and only about half of women diagnosed with ovarian cancer survive five or more years past diagnosis. Unlike cervical cancer, there is no routine screening for ovarian cancer, so it often goes undetected until it has reached advanced stages. Additionally, the primary symptoms of ovarian cancer—frequent urination, bloating, loss of appetite, and abdominal pain—can often be mistaken for other non-cancerous conditions, delaying treatment.
An American woman has roughly a one percent chance of developing ovarian cancer throughout her lifetime. However, these odds increase significantly if she has inherited mutations in the BRCA1 or BRCA2 genes. Women who carry these mutations face a 46% lifetime risk for ovarian and breast cancers.
An Unlikely Solution
To address this escalating health concern, the organization Cancer Research UK has invested £600,000 over the next three years in research aimed at creating a vaccine, which would destroy cancerous cells before they have a chance to develop any further.
Researchers at the University of Oxford are at the forefront of this initiative. With funding from Cancer Research UK, scientists will use tissue samples from the ovaries and fallopian tubes of patients currently battling ovarian cancer. Using these samples, University of Oxford scientists will create a vaccine to recognize certain proteins on the surface of ovarian cancer cells known as tumor-associated antigens. The vaccine will then train that person’s immune system to recognize the cancer markers and destroy them.
The next step
Once developed, the vaccine will first be tested in patients with the disease, to see if their ovarian tumors will shrink or disappear. Then, the vaccine will be tested in women with the BRCA1 or BRCA2 mutations as well as women in the general population without genetic mutations, to see whether the vaccine can prevent the cancer altogether.
While the vaccine still has “a long way to go,” according to Professor Ahmed Ahmed, Director of Oxford University’s ovarian cancer cell laboratory, he is “optimistic” about the results.
“We need better strategies to prevent ovarian cancer,” said Ahmed in a press release from the University of Oxford. “Currently, women with BRCA1/2 mutations are offered surgery which prevents cancer but robs them of the chance to have children afterward.
Teaching the immune system to recognize the very early signs of cancer is a tough challenge. But we now have highly sophisticated tools which give us real insights into how the immune system recognizes ovarian cancer. OvarianVax could offer the solution.”
How sharing, hearing, and remembering positive stories can help shape our brains for the better
Across cultures and through millennia, human beings have always told stories. Whether it’s a group of boy scouts around a campfire sharing ghost stories or the paleolithic Cro-Magnons etching pictures of bison on cave walls, researchers believe that storytelling has been universal to human beings since the development of language.
But storytelling was more than just a way for our ancestors to pass the time. Researchers believe that storytelling served an important evolutionary purpose, helping humans learn empathy, share important information (such as where predators were or what berries were safe to eat), as well as strengthen social bonds. Quite literally, storytelling has made it possible for the human race to survive.
Today, neuroscientists are discovering that storytelling is just as important now as it was millions of years ago. Particularly in sharing positive stories, humans can more easily form relational bonds, develop a more flexible perspective, and actually grow new brain circuitry that helps us survive. Here’s how.
How sharing stories positively impacts the brain
When human beings share stories, it increases the levels of certain neurochemicals in the brain, neuroscientists have found. In a 2021 study published in Proceedings of the National Academy of Sciences (PNAS), Swedish researchers found that simply hearing a story could make hospitalized children feel better, compared to other hospitalized children who played a riddle game for the same amount of time. In their research, children in the intensive care unit who heard stories for just 30 minutes had higher levels of oxytocin, a hormone that promotes positive feelings and is linked to relaxation, trust, social connectedness, and overall psychological stability. Furthermore, the same children showed lower levels of cortisol, a hormone associated with stress. Afterward, the group of children who heard stories tended to describe their hospital experiences more positively, and even reported lower levels of pain.
Annie Brewster, MD, knows the positive effect of storytelling from personal experience. An assistant professor at Harvard Medical School and the author of The Healing Power of Storytelling: Using Personal Narrative to Navigate Illness, Trauma, and Loss, Brewster started sharing her personal experience with chronic illness after being diagnosed with multiple sclerosis in 2001. In doing so, Brewster says it has enabled her to accept her diagnosis and integrate it into her identity. Brewster believes so much in the power of hearing and sharing stories that in 2013 she founded Health Story Collaborative, a forum for others to share their mental and physical health challenges.“I wanted to hear stories of people who had found ways to move forward in positive ways, in spite of health challenges,” Brewster said. In doing so, Brewster believes people with chronic conditions can “move closer to self-acceptance and self-love.”
While hearing and sharing positive stories has been shown to increase oxytocin and other “feel good” chemicals, simply remembering a positive story has an effect on our brains as well. Mark Hoelterhoff, PhD, a lecturer in clinical psychology at the University of Edinburgh, recalling and “savoring” a positive story, thought, or feedback “begins to create new brain circuitry—a new neural network that’s geared toward looking for the positive,” he says. Over time, other research shows, savoring positive stories or thoughts can literally change the shape of your brain, hard-wiring someone to see things in a more positive light.How stories can change your behavior
In 2009, Paul Zak, PhD, a neuroscientist and professor at Claremont Graduate University, set out to measure how storytelling can actually change human behavior for the better. In his study, Zak wanted to measure the behavioral effects of oxytocin, and did this by showing test subjects two short video clips designed to elicit an emotional response.
In the first video they showed the study participants, a father spoke to the camera about his two-year-old son, Ben, who had been diagnosed with terminal brain cancer. The father told the audience that he struggled to connect with and enjoy Ben, as Ben had only a few months left to live. In the end, the father finds the strength to stay emotionally connected to his son until he dies.
The second video clip, however, was much less emotional. In that clip, the same father and son are shown spending the day at the zoo. Ben is only suggested to have cancer (he is bald from chemotherapy and referred to as a ‘miracle’, but the cancer isn’t mentioned directly). The second story lacked the dramatic narrative arc of the first video.
Zak’s team took blood before and after the participants watched one of the two videos and found that the first story increased the viewers’ cortisol and oxytocin, suggesting that they felt distress over the boy’s diagnosis and empathy toward the boy and his father. The second narrative, however, didn’t increase oxytocin or cortisol at all.
But Zak took the experiment a step further. After the movie clips, his team gave the study participants a chance to share money with a stranger in the lab. The participants who had an increase in cortisol and oxytocin were more likely to donate money generously. The participants who had increased cortisol and oxytocin were also more likely to donate money to a charity that works with children who are ill. Zak also found that the amount of oxytocin that was released was correlated with how much money people felt comfortable giving—in other words, the more oxytocin that was released, the more generous they felt, and the more money they donated.
How storytelling strengthens our bond with others
Sharing, hearing, and remembering stories can be a powerful tool for social change–not only in the way it changes our brain and our behavior, but also because it can positively affect our relationships with other people
Emotional stimulation from telling stories, writes Zak, is the foundation for empathy, and empathy strengthens our relationships with other people. “By knowing someone’s story—where they come from, what they do, and who you might know in common—relationships with strangers are formed.”
But why are these relationships important for humanity? Because human beings can use storytelling to build empathy and form relationships, it enables them to “engage in the kinds of large-scale cooperation that builds massive bridges and sends humans into space,” says Zak.
Storytelling, Zak found, and the oxytocin release that follows, also makes people more sensitive to social cues. This sensitivity not only motivates us to form relationships, but also to engage with other people and offer help, particularly if the other person seems to need help.
But as Zak found in his experiments, the type of storytelling matters when it comes to affecting relationships. Where Zak found that storytelling with a dramatic arc helps release oxytocin and cortisol, enabling people to feel more empathic and generous, other researchers have found that sharing happy stories allows for greater closeness between individuals and speakers. A group of Chinese researchers found that, compared to emotionally-neutral stories, happy stories were more “emotionally contagious.” Test subjects who heard happy stories had greater activation in certain areas of their brains, experienced more significant, positive changes in their mood, and felt a greater sense of closeness between themselves and the speaker.
“This finding suggests that when individuals are happy, they become less self-focused and then feel more intimate with others,” the authors of the study wrote. “Therefore, sharing happiness could strengthen interpersonal bonding.” The researchers went on to say that this could lead to developing better social networks, receiving more social support, and leading more successful social lives.
Since the start of the COVID pandemic, social isolation, loneliness, and resulting mental health issues have only gotten worse. In light of this, it’s safe to say that hearing, sharing, and remembering stories isn’t just something we can do for entertainment. Storytelling has always been central to the human experience, and now more than ever it’s become something crucial for our survival.
Want to know how you can reap the benefits of hearing happy stories? Keep an eye out for Upworthy’s first book, GOOD PEOPLE: Stories from the Best of Humanity, published by National Geographic/Disney, available on September 3, 2024. GOOD PEOPLE is a much-needed trove of life-affirming stories told straight from the heart. Handpicked from Upworthy’s community, these 101 stories speak to the breadth, depth, and beauty of the human experience, reminding us we have a lot more in common than we realize.