The Good, the Bad, and the Ugly in Personalized Medicine
Is the value of "personalized medicine" over-promised? Why is the quality of health care declining for many people despite the pace of innovation? Do patients and doctors have conflicting priorities? What is the best path forward?
"How do we generate evidence for value, which is what everyone is asking for?"
Some of the country's leading medical experts recently debated these questions at the prestigious annual Personalized Medicine Conference, held at Harvard Medical School in Boston, and LeapsMag was there to bring you the inside scoop.
Personalized Medicine: Is It Living Up to the Hype?
The buzzworthy phrase "personalized medicine" has been touted for years as the way of the future—customizing care to patients based on their predicted responses to treatments given their individual genetic profiles or other analyses. Since the initial sequencing of the human genome around fifteen years ago, the field of genomics has exploded as the costs have dramatically come down – from $2.7 billion to $1000 or less today. Given cheap access to such crucial information, the medical field has been eager to embrace an ultramodern world in which preventing illnesses is status quo, and treatments can be tailored for maximum effectiveness. But whether that world has finally arrived remains debatable.
"I've been portrayed as an advocate for genomics, because I'm excited about it," said Robert C. Green, Director of the Genomes2People Research Program at Harvard Medical School, the Broad Institute, and Brigham and Women's Hospital. He qualified his advocacy by saying that he tries to remain 'equipoised' or balanced in his opinions about the future of personalized medicine, and expressed skepticism about some aspects of its rapid commercialization.
"I have strong feelings about some of the [precision medicine] products that are rushing out to market in both the physician-mediated space and the consumer space," Green said, and challenged the value and sustainability of these products, such as their clinical utility and ability to help produce favorable health outcomes. He asked what most patients and providers want to know, which is, "What are the medical, behavioral, and economic outcomes? How do we generate evidence for value, which is what everyone is asking for?" He later questioned whether the use of 'sexy' and expensive diagnostic technologies is necessarily better than doing things the old-fashioned way. For instance, it is much easier and cheaper to ask a patient directly about their family history of disease, instead of spending thousands of dollars to obtain the same information with pricey diagnostic tests.
"Our mantra is to try to do data-driven health...to catch disease when it occurs early."
Michael Snyder, Professor & Chair of the Department of Genetics and Director of the Center for Genomics and Personalized Medicine at Stanford University, called himself more of an 'enthusiast' about precision medicine products like wearable devices that can digitally track vital signs, including heart rate and blood oxygen levels. "I'm certainly not equipoised," he said, adding, "Our mantra is to try to do data-driven health. We are using this to try to understand health and catch disease when it occurs early."
Snyder then shared his personal account about how his own wearable device alerted him to seek treatment while he was traveling in Norway. "My blood oxygen was low and my heart rate was high, so that told me something was up," he shared. After seeing a doctor, he discovered he was suffering from Lyme disease. He then shared other similar success stories about some of the patients in his department. Using wearable health sensors, he said, could significantly reduce health care costs: "$245 billion is spent every year on diabetes, and if we reduce that by ten percent we just saved $24 billion."
From left, Robert Green, Michael Snyder, Sandro Galea, and Thomas Miller.
(Courtesy Rachele Hendricks-Sturrup)
A Core Reality: Unresolved Societal Issues
Sandro Galea, Dean and Professor at Boston University's School of Public Health, coined himself as a 'skeptic' but also an 'enormous fan' of new technologies. He said, "I want to make sure that you all [the audience] have the best possible treatment for me when I get sick," but added, "In our rush and enthusiasm to embrace personalized and precision medicine approaches, we have done that at the peril of forgetting a lot of core realities."
"There's no one to pay for health care but all of us."
Galea stressed the need to first address certain difficult societal issues because failing to do so will deter precision medicine cures in the future. "Unless we pay attention to domestic violence, housing, racism, poor access to care, and poverty… we are all going to lose," he said. Then he quoted recent statistics about the country's growing gap in both health and wealth, which could potentially erode patient and provider interest in personalized medicine.
Thomas Miller, the founder and partner of a venture capital firm dedicated to advancing precision medicine, agreed with Galea and said that "there's no one to pay for health care but all of us." He recalled witnessing 'abuse' of diagnostic technologies that he had previously invested in. "They were often used as mechanisms to provide unnecessary care rather than appropriate care," he said. "The trend over my 30-year professional career has been that of sensitivity over specificity."
In other words: doctors rely too heavily on diagnostic tools that are sensitive enough to detect signs of a disease, but not accurate enough to confirm the presence of a specific disease. "You will always find that you're sick from something," Miller said. He lamented the counter-productivity and waste brought on by such 'abuse' and added, "That's money that could be used to address some of the problems that you [Galea] just talked about."
Do Patients and Providers Have Conflicting Priorities?
Distrust in the modern health care system is not new in the United States. That fact that medical errors were the third leading cause of death in 2016 may have fueled this mistrust even more. And the level of mistrust appears correlated with race; a recent survey of 118 adults between 18 to 75 years old showed that black respondents were less likely to trust their doctors than the non-Hispanic white respondents. The black respondents were also more concerned about personal privacy and potentially harmful hospital experimentation.
"The vast majority of physicians in this country are incentivized to keep you sick."
As if this context weren't troubling enough, some of the panelists suggested that health care providers and patients have misaligned goals, which may be financially driven.
For instance, Galea stated that health care is currently 'curative' even though that money is better spent on prevention versus cures. "The vast majority of physicians in this country are incentivized to keep you sick," he declared. "They are paid by sick patient visits. Hospital CEOs are paid by the number of sick people they have in their beds." He highlighted this issue as a national priority and mentioned some case studies showing that the behaviors of hospital CEOs quickly change when payment is based on the number of patients in beds versus the number of patients being kept out of the beds. Green lauded Galea's comment as "good sense."
Green also cautioned the audience about potential financial conflicts of interest held by proponents of precision medicine technologies. "Many of the people who are promoting genomics and personalized medicine are people who have financial interests in that arena," he warned. He emphasized that those who are perhaps curbing the over-enthusiasm do not have financial interests at stake.
What is the Best Path Forward for Personalized Medicine?
As useful as personalized medicine may be for selecting the best course of treatment, there is also the flip side: It can allow doctors to predict who will not respond well—and this painful reality must be acknowledged.
Miller argued, "We have a duty to call out therapies that won't work, that will not heal, that need to be avoided, and that will ultimately lead to you saying to a patient, 'There is nothing for you that will work.'"
Although that may sound harsh, it captures the essence of this emerging paradigm, which is to maximize health by using tailored methods that are based on comparative effectiveness, evidence of outcomes, and patient preferences. After all, as Miller pointed out, it wouldn't do much good to prescribe someone a regimen with little reason to think it might help.
For the hype around personalized medicine to be fully realized, Green concluded, "We have to prove to people that [the value of it] is true."
A startup aims to make medicines in space
Story by Big Think
On June 12, a SpaceX Falcon 9 rocket deployed 72 small satellites for customers — including the world’s first space factory.
The challenge: In 2019, pharma giant Merck revealed that an experiment on the International Space Station had shown how to make its blockbuster cancer drug Keytruda more stable. That meant it could now be administered via a shot rather than through an IV infusion.
The key to the discovery was the fact that particles behave differently when freed from the force of gravity — seeing how its drug crystalized in microgravity helped Merck figure out how to tweak its manufacturing process on Earth to produce the more stable version.
Microgravity research could potentially lead to many more discoveries like this one, or even the development of brand-new drugs, but ISS astronauts only have so much time for commercial experiments.
“There are many high-performance products that are only possible to make in zero-gravity, which is a manufacturing capability that cannot be replicated in any factory on Earth.”-- Will Bruey.
The only options for accessing microgravity (or free fall) outside of orbit, meanwhile, are parabolic airplane flights and drop towers, and those are only useful for experiments that require less than a minute in microgravity — Merck’s ISS experiment took 18 days.
The idea: In 2021, California startup Varda Space Industries announced its intention to build the world’s first space factory, to manufacture not only pharmaceuticals but other products that could benefit from being made in microgravity, such as semiconductors and fiber optic cables.
This factory would consist of a commercial satellite platform attached to two Varda-made modules. One module would contain equipment capable of autonomously manufacturing a product. The other would be a reentry capsule to bring the finished goods back to Earth.
“There are many high-performance products that are only possible to make in zero-gravity, which is a manufacturing capability that cannot be replicated in any factory on Earth,” said CEO Will Bruey, who’d previously developed and flown spacecraft for SpaceX.
“We have a team stacked with aerospace talent in the prime of their careers, focused on getting working hardware to orbit as quickly as possible,” he continued.
“[Pharmaceuticals] are the most valuable chemicals per unit mass. And they also have a large market on Earth.” -- Will Bruey, CEO of Varda Space.
What’s new? At the time, Varda said it planned to launch its first space factory in 2023, and, in what feels like a first for a space startup, it has actually hit that ambitious launch schedule.
“We have ACQUISITION OF SIGNAL,” the startup tweeted soon after the Falcon 9 launch on June 12. “The world’s first space factory’s solar panels have found the sun and it’s beginning to de-tumble.”
During the satellite’s first week in space, Varda will focus on testing its systems to make sure everything works as hoped. The second week will be dedicated to heating and cooling the old HIV-AIDS drug ritonavir repeatedly to study how its particles crystalize in microgravity.
After about a month in space, Varda will attempt to bring its first space factory back to Earth, sending it through the atmosphere at hypersonic speeds and then using a parachute system to safely land at the Department of Defense’s Utah Test and Training Range.
Looking ahead: Ultimately, Varda’s space factories could end up serving dual purposes as manufacturing facilities and hypersonic testbeds — the Air Force has already awarded the startup a contract to use its next reentry capsule to test hardware for hypersonic missiles.
But as for manufacturing other types of goods, Varda plans to stick with drugs for now.
“[Pharmaceuticals] are the most valuable chemicals per unit mass,” Bruey told CNN. “And they also have a large market on Earth.”
“You’re not going to see Varda do anything other than pharmaceuticals for the next minimum of six, seven years,” added Delian Asparouhov, Varda’s co-founder and president.
Genes that protect health with Dr. Nir Barzilai
In today’s podcast episode, I talk with Nir Barzilai, a geroscientist, which means he studies the biology of aging. Barzilai directs the Institute for Aging Research at the Albert Einstein College of Medicine.
My first question for Dr. Barzilai was: why do we age? And is there anything to be done about it? His answers were encouraging. We can’t live forever, but we have some control over the process, as he argues in his book, Age Later.
Dr. Barzilai told me that centenarians differ from the rest of us because they have unique gene mutations that help them stay healthy longer. For most of us, the words “gene mutations” spell trouble - we associate these words with cancer or neurodegenerative diseases, but apparently not all mutations are bad.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Centenarians may have essentially won the genetic lottery, but that doesn’t mean the rest of us are predestined to have a specific lifespan and health span, or the amount of time spent living productively and enjoyably. “Aging is a mother of all diseases,” Dr. Barzilai told me. And as a disease, it can be targeted by therapeutics. Dr. Barzilai’s team is already running clinical trials on such therapeutics — and the results are promising.
More about Dr. Barzilai: He is scientific director of AFAR, American Federation for Aging Research. As part of his work, Dr. Barzilai studies families of centenarians and their genetics to learn how the rest of us can learn and benefit from their super-aging. He also organizing a clinical trial to test a specific drug that may slow aging.
Show Links
Age Later: Health Span, Life Span, and the New Science of Longevity https://www.amazon.com/Age-Later-Healthiest-Sharpest-Centenarians/dp/1250230853
American Federation for Aging Research https://www.afar.org
https://www.afar.org/nir-barzilai
https://www.einsteinmed.edu/faculty/484/nir-barzilai/
Metformin as a Tool to Target Aging
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943638/
Benefits of Metformin in Attenuating the Hallmarks of Aging https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347426/
The Longevity Genes Project https://www.einsteinmed.edu/centers/aging/longevity-genes-project/
Lina Zeldovich has written about science, medicine and technology for Popular Science, Smithsonian, National Geographic, Scientific American, Reader’s Digest, the New York Times and other major national and international publications. A Columbia J-School alumna, she has won several awards for her stories, including the ASJA Crisis Coverage Award for Covid reporting, and has been a contributing editor at Nautilus Magazine. In 2021, Zeldovich released her first book, The Other Dark Matter, published by the University of Chicago Press, about the science and business of turning waste into wealth and health. You can find her on http://linazeldovich.com/ and @linazeldovich.