Breakthrough in Creating Fuel from Sunlight Puts Us Closer to Carbon-Neutral Energy

Breakthrough in Creating Fuel from Sunlight Puts Us Closer to Carbon-Neutral Energy

Recent leaps in technology represent an important step forward in unlocking artificial photosynthesis.

Photo by Johannes Plenio on Unsplash

Since the beginning of life on Earth, plants have been naturally converting sunlight into energy. This photosynthesis process that's effortless for them has been anything but for scientists who have been trying to achieve artificial photosynthesis for the last half a century with the goal of creating a carbon-neutral fuel. Such a fuel could be a gamechanger — rather than putting CO2 back into the atmosphere like traditional fuels do, it would take CO2 out of the atmosphere and convert it into usable energy.

If given the option between a carbon-neutral fuel at the gas station and a fuel that produces carbon dioxide in spades -- and if costs and effectiveness were equal --who wouldn't choose the one best for the planet? That's the endgame scientists are after. A consumer switch to clean fuel could have a huge impact on our global CO2 emissions.

Keep Reading Keep Reading
Ally Hirschlag
Ally Hirschlag is a Brooklyn-based writer and editor who covers mental health, women's rights, and sustainability among other things. In her spare time, she enjoys baking and channeling her anxiety into satire. You can find more of her work and musings on Facebook and Twitter.
Nobel Prize goes to technology for mRNA vaccines

Katalin Karikó, pictured, and Drew Weissman won the Nobel Prize for advances in mRNA research that led to the first Covid vaccines.

Adobe Stock

When Drew Weissman received a call from Katalin Karikó in the early morning hours this past Monday, he assumed his longtime research partner was calling to share a nascent, nagging idea. Weissman, a professor of medicine at the Perelman School of Medicine at the University of Pennsylvania, and Karikó, a professor at Szeged University and an adjunct professor at UPenn, both struggle with sleep disturbances. Thus, middle-of-the-night discourses between the two, often over email, has been a staple of their friendship. But this time, Karikó had something more pressing and exciting to share: They had won the 2023 Nobel Prize in Physiology or Medicine.

Keep Reading Keep Reading
Ross Pomeroy
Steven Ross Pomeroy is the editor of RealClearScience. As a writer, Ross believes that his greatest assets are his insatiable curiosity and his ceaseless love for learning. Follow him on Twitter
Scientists turn pee into power in Uganda

With conventional fuel cells as their model, researchers learned to use similar chemical reactions to make a fuel from microbes in pee.

Adobe Stock

At the edge of a dirt road flanked by trees and green mountains outside the town of Kisoro, Uganda, sits the concrete building that houses Sesame Girls School, where girls aged 11 to 19 can live, learn and, at least for a while, safely use a toilet. In many developing regions, toileting at night is especially dangerous for children. Without electrical power for lighting, kids may fall into the deep pits of the latrines through broken or unsteady floorboards. Girls are sometimes assaulted by men who hide in the dark.

For the Sesame School girls, though, bright LED lights, connected to tiny gadgets, chased the fears away. They got to use new, clean toilets lit by the power of their own pee. Some girls even used the light provided by the latrines to study.

Urine, whether animal or human, is more than waste. It’s a cheap and abundant resource. Each day across the globe, 8.1 billion humans make 4 billion gallons of pee. Cows, pigs, deer, elephants and other animals add more. By spending money to get rid of it, we waste a renewable resource that can serve more than one purpose. Microorganisms that feed on nutrients in urine can be used in a microbial fuel cell that generates electricity – or "pee power," as the Sesame girls called it.

Keep Reading Keep Reading
Jenny Morber
Jenny Morber was trained as a scientist and engineer at Georgia Tech, then lost all chance at a Nobel Prize by pivoting to journalism. She writes from the mossy Pacific Northwest about science, people and the world. She misses seeing atoms but is grateful that her days are filled with fresh air, new ideas and interesting people.