AI and you: Is the promise of personalized nutrition apps worth the hype?
As a type 2 diabetic, Michael Snyder has long been interested in how blood sugar levels vary from one person to another in response to the same food, and whether a more personalized approach to nutrition could help tackle the rapidly cascading levels of diabetes and obesity in much of the western world.
Eight years ago, Snyder, who directs the Center for Genomics and Personalized Medicine at Stanford University, decided to put his theories to the test. In the 2000s continuous glucose monitoring, or CGM, had begun to revolutionize the lives of diabetics, both type 1 and type 2. Using spherical sensors which sit on the upper arm or abdomen – with tiny wires that pierce the skin – the technology allowed patients to gain real-time updates on their blood sugar levels, transmitted directly to their phone.
It gave Snyder an idea for his research at Stanford. Applying the same technology to a group of apparently healthy people, and looking for ‘spikes’ or sudden surges in blood sugar known as hyperglycemia, could provide a means of observing how their bodies reacted to an array of foods.
“We discovered that different foods spike people differently,” he says. “Some people spike to pasta, others to bread, others to bananas, and so on. It’s very personalized and our feeling was that building programs around these devices could be extremely powerful for better managing people’s glucose.”
Unbeknown to Snyder at the time, thousands of miles away, a group of Israeli scientists at the Weizmann Institute of Science were doing exactly the same experiments. In 2015, they published a landmark paper which used CGM to track the blood sugar levels of 800 people over several days, showing that the biological response to identical foods can vary wildly. Like Snyder, they theorized that giving people a greater understanding of their own glucose responses, so they spend more time in the normal range, may reduce the prevalence of type 2 diabetes.
The commercial potential of such apps is clear, but the underlying science continues to generate intriguing findings.
“At the moment 33 percent of the U.S. population is pre-diabetic, and 70 percent of those pre-diabetics will become diabetic,” says Snyder. “Those numbers are going up, so it’s pretty clear we need to do something about it.”
Fast forward to 2022,and both teams have converted their ideas into subscription-based dietary apps which use artificial intelligence to offer data-informed nutritional and lifestyle recommendations. Snyder’s spinoff, January AI, combines CGM information with heart rate, sleep, and activity data to advise on foods to avoid and the best times to exercise. DayTwo–a start-up which utilizes the findings of Weizmann Institute of Science–obtains microbiome information by sequencing stool samples, and combines this with blood glucose data to rate ‘good’ and ‘bad’ foods for a particular person.
“CGMs can be used to devise personalized diets,” says Eran Elinav, an immunology professor and microbiota researcher at the Weizmann Institute of Science in addition to serving as a scientific consultant for DayTwo. “However, this process can be cumbersome. Therefore, in our lab we created an algorithm, based on data acquired from a big cohort of people, which can accurately predict post-meal glucose responses on a personal basis.”
The commercial potential of such apps is clear. DayTwo, who market their product to corporate employers and health insurers rather than individual consumers, recently raised $37 million in funding. But the underlying science continues to generate intriguing findings.
Last year, Elinav and colleagues published a study on 225 individuals with pre-diabetes which found that they achieved better blood sugar control when they followed a personalized diet based on DayTwo’s recommendations, compared to a Mediterranean diet. The journal Cell just released a new paper from Snyder’s group which shows that different types of fibre benefit people in different ways.
“The idea is you hear different fibres are good for you,” says Snyder. “But if you look at fibres they’re all over the map—it’s like saying all animals are the same. The responses are very individual. For a lot of people [a type of fibre called] arabinoxylan clearly reduced cholesterol while the fibre inulin had no effect. But in some people, it was the complete opposite.”
Eight years ago, Stanford's Michael Snyder began studying how continuous glucose monitors could be used by patients to gain real-time updates on their blood sugar levels, transmitted directly to their phone.
The Snyder Lab, Stanford Medicine
Because of studies like these, interest in precision nutrition approaches has exploded in recent years. In January, the National Institutes of Health announced that they are spending $170 million on a five year, multi-center initiative which aims to develop algorithms based on a whole range of data sources from blood sugar to sleep, exercise, stress, microbiome and even genomic information which can help predict which diets are most suitable for a particular individual.
“There's so many different factors which influence what you put into your mouth but also what happens to different types of nutrients and how that ultimately affects your health, which means you can’t have a one-size-fits-all set of nutritional guidelines for everyone,” says Bruce Y. Lee, professor of health policy and management at the City University of New York Graduate School of Public Health.
With the falling costs of genomic sequencing, other precision nutrition clinical trials are choosing to look at whether our genomes alone can yield key information about what our diets should look like, an emerging field of research known as nutrigenomics.
The ASPIRE-DNA clinical trial at Imperial College London is aiming to see whether particular genetic variants can be used to classify individuals into two groups, those who are more glucose sensitive to fat and those who are more sensitive to carbohydrates. By following a tailored diet based on these sensitivities, the trial aims to see whether it can prevent people with pre-diabetes from developing the disease.
But while much hope is riding on these trials, even precision nutrition advocates caution that the field remains in the very earliest of stages. Lars-Oliver Klotz, professor of nutrigenomics at Friedrich-Schiller-University in Jena, Germany, says that while the overall goal is to identify means of avoiding nutrition-related diseases, genomic data alone is unlikely to be sufficient to prevent obesity and type 2 diabetes.
“Genome data is rather simple to acquire these days as sequencing techniques have dramatically advanced in recent years,” he says. “However, the predictive value of just genome sequencing is too low in the case of obesity and prediabetes.”
Others say that while genomic data can yield useful information in terms of how different people metabolize different types of fat and specific nutrients such as B vitamins, there is a need for more research before it can be utilized in an algorithm for making dietary recommendations.
“I think it’s a little early,” says Eileen Gibney, a professor at University College Dublin. “We’ve identified a limited number of gene-nutrient interactions so far, but we need more randomized control trials of people with different genetic profiles on the same diet, to see whether they respond differently, and if that can be explained by their genetic differences.”
Some start-ups have already come unstuck for promising too much, or pushing recommendations which are not based on scientifically rigorous trials. The world of precision nutrition apps was dubbed a ‘Wild West’ by some commentators after the founders of uBiome – a start-up which offered nutritional recommendations based on information obtained from sequencing stool samples –were charged with fraud last year. The weight-loss app Noom, which was valued at $3.7 billion in May 2021, has been criticized on Twitter by a number of users who claimed that its recommendations have led to them developed eating disorders.
With precision nutrition apps marketing their technology at healthy individuals, question marks have also been raised about the value which can be gained through non-diabetics monitoring their blood sugar through CGM. While some small studies have found that wearing a CGM can make overweight or obese individuals more motivated to exercise, there is still a lack of conclusive evidence showing that this translates to improved health.
However, independent researchers remain intrigued by the technology, and say that the wealth of data generated through such apps could be used to help further stratify the different types of people who become at risk of developing type 2 diabetes.
“CGM not only enables a longer sampling time for capturing glucose levels, but will also capture lifestyle factors,” says Robert Wagner, a diabetes researcher at University Hospital Düsseldorf. “It is probable that it can be used to identify many clusters of prediabetic metabolism and predict the risk of diabetes and its complications, but maybe also specific cardiometabolic risk constellations. However, we still don’t know which forms of diabetes can be prevented by such approaches and how feasible and long-lasting such self-feedback dietary modifications are.”
Snyder himself has now been wearing a CGM for eight years, and he credits the insights it provides with helping him to manage his own diabetes. “My CGM still gives me novel insights into what foods and behaviors affect my glucose levels,” he says.
He is now looking to run clinical trials with his group at Stanford to see whether following a precision nutrition approach based on CGM and microbiome data, combined with other health information, can be used to reverse signs of pre-diabetes. If it proves successful, January AI may look to incorporate microbiome data in future.
“Ultimately, what I want to do is be able take people’s poop samples, maybe a blood draw, and say, ‘Alright, based on these parameters, this is what I think is going to spike you,’ and then have a CGM to test that out,” he says. “Getting very predictive about this, so right from the get go, you can have people better manage their health and then use the glucose monitor to help follow that.”
He Almost Died from a Deadly Superbug. A Virus Saved Him.
An attacking rogue hippo, giant jumping spiders, even a coup in Timbuktu couldn't knock out Tom Patterson, but now he was losing the fight against a microscopic bacteria.
Death seemed inevitable, perhaps hours away, despite heroic efforts to keep him alive.
It was the deadly drug-resistant superbug Acinetobacter baumannii. The infection struck during a holiday trip with his wife to the pyramids in Egypt and had sent his body into toxic shock. His health was deteriorating so rapidly that his insurance company paid to medevac him first to Germany, then home to San Diego.
Weeks passed as he lay in a coma, shedding more than a hundred pounds. Several major organs were on the precipice of collapse, and death seemed inevitable, perhaps hours away despite heroic efforts by a major research university hospital to keep Tom alive.
Tom Patterson in a deep coma on March 14, 2016, the day before phage therapy was initiated.
(Courtesy Steffanie Strathdee)
Then doctors tried something boldly experimental -- injecting him with a cocktail of bacteriophages, tiny viruses that might infect and kill the bacteria ravaging his body.
It worked. Days later Tom's eyes fluttered open for a few brief seconds, signaling that the corner had been turned. Recovery would take more weeks in the hospital and about a year of rehabilitation before life began to resemble anything near normal.
In her new book The Perfect Predator, Tom's wife, Steffanie Strathdee, recounts the personal and scientific ordeal from twin perspectives as not only his spouse but also as a research epidemiologist who has traveled the world to track down diseases.
Part of the reason why Steff wrote the book is that both she and Tom suffered severe PTSD after his illness. She says they also felt it was "part of our mission, to ensure that phage therapy wasn't going to be forgotten for another hundred years."
Tom Patterson and Steffanie Strathdee taking a first breath of fresh air during recovery outside the UCSD hospital.
(Courtesy Steffanie Strathdee)
From Prehistoric Arms Race to Medical Marvel
Bacteriophages, or phages for short, evolved as part of the natural ecosystem. They are viruses that infect bacteria, hijacking their host's cellular mechanisms to reproduce themselves, and in the process destroying the bacteria. The entire cycle plays out in about 20-60 minutes, explains Ben Chan, a phage research scientist at Yale University.
They were first used to treat bacterial infections a century ago. But the development of antibiotics soon eclipsed their use as medicine and a combination of scientific, economic, and political factors relegated them to a dusty corner of science. The emergence of multidrug-resistant bacteria has highlighted the limitations of antibiotics and prompted a search for new approaches, including a revived interest in phages.
Most phages are very picky, seeking out not just a specific type of bacteria, but often a specific strain within a family of bacteria. They also prefer to infect healthy replicating bacteria, not those that are at rest. That's what makes them so intriguing to tap as potential therapy.
Tom's case was one of the first times that phages were successfully infused into the bloodstream of a human.
Phages and bacteria evolved measures and countermeasures to each other in an "arms race" that began near the dawn of life on the planet. It is not that one consciously tries to thwart the other, says Chan, it's that countless variations of each exists in the world and when a phage gains the upper hand and kills off susceptible bacteria, it opens up a space in the ecosystem for similar bacteria that are not vulnerable to the phage to increase in numbers. Then a new phage variant comes along and the cycle repeats.
Robert "Chip" Schooley is head of infectious diseases at the University of California San Diego (UCSD) School of Medicine and a leading expert on treating HIV. He had no background with phages but when Steff, a friend and colleague, approached him in desperation about using them with Tom, he sprang into action to learn all he could, and to create a network of experts who might provide phages capable of killing Acinetobacter.
"There is very little evidence that phage[s] are dangerous," Chip concluded after first reviewing the literature and now after a few years of experience using them. He compares broad-spectrum antibiotics to using a bazooka, where every time you use them, less and less of the "good" bacteria in the body are left. "With a phage cocktail what you're really doing is more of a laser."
Collaborating labs were able to identify two sets of phage cocktails that were sensitive to Tom's particular bacterial infection. And the FDA acted with lightning speed to authorize the experimental treatment.
A bag of a four-phage "cocktail" before being infused into Tom Patterson.
(Courtesy Steffanie Strathdee)
Tom's case was scientifically important because it was one of the first times that phages were successfully infused into the bloodstream of a human. Most prior use of phages involved swallowing them or placing them directly on the area of infection.
The success has since sparked a renewed interest in phages and a reexamination of their possible role in medicine.
Over the two years since Tom awoke from his coma, several other people around the world have been successfully treated with phages as part of their regimen, after antibiotics have failed.
The Future of Phage Therapy
The experience treating Tom prompted UCSD to create the Center for Innovative Phage Applications and Therapeutics (IPATH), with Chip and Steff as co-directors. Previous labs have engaged in basic research on phages, but this is the first clinical center in North America to focus on translating that knowledge into treating patients.
In January, IPATH announced the first phase 2 clinical trial approved by the FDA that will use phages intravenously. The viruses are being developed by AmpliPhi Biosciences, a San Diego-based company that supplied one of the phages used to treat Tom. The new study takes on drug resistant Staph aureus bacteria. Experimental phage therapy treatment using the company's product candidates was recently completed in 21 patients at seven hospitals who had been suffering from serious infections that did not respond to antibiotics. The reported success rate was 84 percent.
The new era of phage research is applying cutting-edge biologic and informatics tools to better understand and reshape the viruses to better attack bacteria, evade resistance, and perhaps broaden their reach a bit within a bacterial family.
Genetic engineering tools are being used to enhance the phages' ability to infect targeted bacteria.
"As we learn more and more about which biological activities are critical and in which clinical settings, there are going to be ways to optimize these activities," says Chip. Sometimes phages may be used alone, other times in combination with antibiotics.
Genetic engineering using tools are being used to enhance the phages' ability to infect targeted bacteria and better counter evolving forms of bacterial resistance in the ongoing "arms race" between the two. It isn't just theory. A patient recently was successfully treated with a genetically modified phage as part of the regimen, and the paper is in press.
In reality, given the trillions of phages in the world and the endless encounters they have had with bacteria over the millennia, it is likely that the exact phages needed to kill off certain bacteria already exist in nature. Using CRISPR to modify a phage is simply a quick way to identify the right phage useful for a given patient and produce it in the necessary quantities, rather than go search for the proverbial phage needle in a sewage haystack, says Chan.
One non-medical reason why using modified phages could be significant is that it creates an intellectual property stake, something that is patentable with a period of exclusive use. Major pharmaceutical companies and venture capitalists have been hesitant to invest in organisms found in nature; but a patentable modification may be enough to draw their interest to phage development and provide the funding for large-scale clinical trials necessary for FDA approval and broader use.
"There are 10 million trillion trillion phages on the planet, 10 to the power of 31. And the fact is that this ongoing evolutionary arms race between bacteria and phage, they've been at it for a millennia," says Steff. "We just need to exploit it."
This Mom Is On a Mission to End Sickle Cell Disease
[Editor's Note: This video is the third of a five-part series titled "The Future Is Now: The Revolutionary Power of Stem Cell Research." Produced in partnership with the Regenerative Medicine Foundation, and filmed at the annual 2019 World Stem Cell Summit, this series illustrates how stem cell research will profoundly impact human life.]
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.