Health breakthroughs of 2022 that should have made bigger news
As the world has attempted to move on from COVID-19 in 2022, attention has returned to other areas of health and biotech with major regulatory approvals such as the Alzheimer's drug lecanemab – which can slow the destruction of brain cells in the early stages of the disease – being hailed by some as momentous breakthroughs.
This has been a year where psychedelic medicines have gained the attention of mainstream researchers with a groundbreaking clinical trial showing that psilocybin treatment can help relieve some of the symptoms of major depressive disorder. And with messenger RNA (mRNA) technology still very much capturing the imagination, the readouts of cancer vaccine trials have made headlines around the world.
But at the same time there have been vital advances which will likely go on to change medicine, and yet have slipped beneath the radar. I asked nine forward-thinking experts on health and biotech about the most important, but underappreciated, breakthrough of 2022.
Their descriptions, below, were lightly edited by Leaps.org for style and format.
New drug targets for Alzheimer’s disease
Professor Julie Williams, Director, Dementia Research Institute, Cardiff University
Genetics has changed our view of Alzheimer’s disease in the last five to six years. The beta amyloid hypothesis has dominated Alzheimer’s research for a long time, but there are multiple components to this complex disease, of which getting rid of amyloid plaques is one, but it is not the whole story. In April 2022, Nature published a paper which is the culmination of a decade’s worth of work - groups all over the world working together to identify 75 genes associated with risk of developing Alzheimer’s. This provides us with a roadmap for understanding the disease mechanisms.
For example, it is showing that there is something different about the immune systems of people who develop Alzheimer’s disease. There is something different about the way they process lipids in the brain, and very specific processes of how things travel through cells called endocytosis. When it comes to immunity, it indicates that the complement system is affecting whether synapses, which are the connections between neurons, get eliminated or not. In Alzheimer’s this process is more severe, so patients are losing more synapses, and this is correlated with cognition.
The genetics also implicates very specific tissues like microglia, which are the housekeepers in the brain. One of their functions is to clear away beta amyloid, but they also prune and nibble away at parts of the brain that are indicated to be diseased. If you have these risk genes, it seems that you are likely to prune more tissue, which may be part of the cell death and neurodegeneration that we observe in Alzheimer’s patients.
Genetics is telling us that we need to be looking at multiple causes of this complex disease, and we are doing that now. It is showing us that there are a number of different processes which combine to push patients into a disease state which results in the death of connections between nerve cells. These findings around the complement system and other immune-related mechanisms are very interesting as there are already drugs which are available for other diseases which could be repurposed in clinical trials. So it is really a turning point for us in the Alzheimer’s disease field.
Preventing Pandemics with Organ-Tissue Equivalents
Anthony Atala, Director of the Wake Forest Institute for Regenerative Medicine
COVID-19 has shown us that we need to be better prepared ahead of future pandemics and have systems in place where we can quickly catalogue a new virus and have an idea of which treatment agents would work best against it.
At Wake Forest Institute, our scientists have developed what we call organ-tissue equivalents. These are miniature tissues and organs, created using the same regenerative medicine technologies which we have been using to create tissues for patients. For example, if we are making a miniature liver, we will recreate this structure using the six different cell types you find in the liver, in the right proportions, and then the right extracellular matrix which holds the structure together. You're trying to replicate all the characteristics of the liver, but just in a miniature format.
We can now put these organ-tissue equivalents in a chip-like device, where we can expose them to different types of viral infections, and start to get a realistic idea of how the human body reacts to these viruses. We can use artificial intelligence and machine learning to map the pathways of the body’s response. This will allow us to catalogue known viruses far more effectively, and begin storing information on them.
Powering Deep Brain Stimulators with Breath
Islam Mosa, Co-Founder and CTO of VoltXon
Deep brain stimulation (DBS) devices are becoming increasingly common with 150,000 new devices being implanted every year for people with Parkinson’s disease, but also psychiatric conditions such as treatment-resistant depression and obsessive-compulsive disorders. But one of the biggest limitations is the power source – I call DBS devices energy monsters. While cardiac pacemakers use similar technology, their batteries last seven to ten years, but DBS batteries need changing every two to three years. This is because they are generating between 60-180 pulses per second.
Replacing the batteries requires surgery which costs a lot of money, and with every repeat operation comes a risk of infection, plus there is a lot of anxiety on behalf of the patient that the battery is running out.
My colleagues at the University of Connecticut and I, have developed a new way of charging these devices using the person’s own breathing movements, which would mean that the batteries never need to be changed. As the patient breathes in and out, their chest wall presses on a thin electric generator, which converts that movement into static electricity, charging a supercapacitor. This discharges the electricity required to power the DBS device and send the necessary pulses to the brain.
So far it has only been tested in a simulated pig, using a pig lung connected to a pump, but there are plans now to test it in a real animal, and then progress to clinical trials.
Smartwatches for Disease Detection
Jessilyn Dunn, Assistant Professor in Duke Biomedical Engineering
A group of researchers recently showed that digital biomarkers of infection can reveal when someone is sick, often before they feel sick. The team, which included Duke biomedical engineers, used information from smartwatches to detect Covid-19 cases five to 10 days earlier than diagnostic tests. Smartwatch data included aspects of heart rate, sleep quality and physical activity. Based on this data, we developed an algorithm to decide which people have the most need to take the diagnostic tests. With this approach, the percent of tests that come back positive are about four- to six-times higher, depending on which factors we monitor through the watches.
Our study was one of several showing the value of digital biomarkers, rather than a single blockbuster paper. With so many new ideas and technologies coming out around Covid, it’s hard to be that signal through the noise. More studies are needed, but this line of research is important because, rather than treat everyone as equally likely to have an infectious disease, we can use prior knowledge from smartwatches. With monkeypox, for example, you've got many more people who need to be tested than you have tests available. Information from the smartwatches enables you to improve how you allocate those tests.
Smartwatch data could also be applied to chronic diseases. For viruses, we’re looking for information about anomalies – a big change point in people’s health. For chronic diseases, it’s more like a slow, steady change. Our research lays the groundwork for the signals coming from smartwatches to be useful in a health setting, and now it’s up to us to detect more of these chronic cases. We want to go from the idea that we have this single change point, like a heart attack or stroke, and focus on the part before that, to see if we can detect it.
A Vaccine For RSV
Norbert Pardi, Vaccines Group Lead, Penn Institute for RNA Innovation, University of Pennsylvania
Scientists have long been trying to develop a vaccine for respiratory syncytial virus (RSV), and it looks like Pfizer are closing in on this goal, based on the latest clinical trial data in newborns which they released in November. Pfizer have developed a protein-based vaccine against the F protein of RSV, which they are giving to pregnant women. It turns out that it induces a robust immune response after the administration of a single shot and it seems to be highly protective in newborns. The efficacy was over 80% after 90 days, so it protected very well against severe disease, and even though this dropped a little after six month, it was still pretty high.
I think this has been a very important breakthrough, and very timely at the moment with both COVID-19, influenza and RSV circulating, which just shows the importance of having a vaccine which works well in both the very young and the very old.
The road to an RSV vaccine has also illustrated the importance of teamwork in 21st century vaccine development. You need people with different backgrounds to solve these challenges – microbiologists, immunologists and structural biologists working together to understand how viruses work, and how our immune system induces protective responses against certain viruses. It has been this kind of teamwork which has yielded the findings that targeting the prefusion stabilized form of the F protein in RSV induces much stronger and highly protective immune responses.
Gene therapy shows its potential
Nicole Paulk, Assistant Professor of Gene Therapy at the University of California, San Francisco
The recent US Food and Drug Administration (FDA) approval of Hemgenix, a gene therapy for hemophilia B, is big for a lot of reasons. While hemophilia is absolutely a rare disease, it is astronomically more common than the first two approvals – Luxturna for RPE65-meidated inherited retinal dystrophy and Zolgensma for spinal muscular atrophy - so many more patients will be treated with this. In terms of numbers of patients, we are now starting to creep up into things that are much more common, which is a huge step in terms of our ability to scale the production of an adeno-associated virus (AAV) vector for gene therapy.
Hemophilia is also a really special patient population because this has been the darling indication for AAV gene therapy for the last 20 to 30 years. AAV trafficks to the liver so well, it’s really easy for us to target the tissues that we want. If you look at the numbers, there have been more gene therapy scientists working on hemophilia than any other condition. There have just been thousands and thousands of us working on gene therapy indications for the last 20 or 30 years, so to see the first of these approvals make it, feels really special.
I am sure it is even more special for the patients because now they have a choice – do I want to stay on my recombinant factor drug that I need to take every day for the rest of my life, or right now I could get a one-time infusion of this virus and possibly experience curative levels of expression for the rest of my life. And this is just the first one for hemophilia, there’s going to end up being a dozen gene therapies within the next five years, targeted towards different hemophilias.
Every single approval is momentous for the entire field because it gets investors excited, it gets companies and physicians excited, and that helps speed things up. Right now, it's still a challenge to produce enough for double digit patients. But with more interest comes the experiments and trials that allow us to pick up the knowledge to scale things up, so that we can go after bigger diseases like diabetes, congestive heart failure, cancer, all of these much bigger afflictions.
Treating Thickened Hearts
John Spertus, Professor in Metabolic and Vascular Disease Research, UMKC School of Medicine
Hypertrophic cardiomyopathy (HCM) is a disease that causes your heart muscle to enlarge, and the walls of your heart chambers thicken and reduce in size. Because of this, they cannot hold as much blood and may stiffen, causing some sufferers to experience progressive shortness of breath, fatigue and ultimately heart failure.
So far we have only had very crude ways of treating it, using beta blockers, calcium channel blockers or other medications which cause the heart to beat less strongly. This works for some patients but a lot of time it does not, which means you have to consider removing part of the wall of the heart with surgery.
Earlier this year, a trial of a drug called mavacamten, became the first study to show positive results in treating HCM. What is remarkable about mavacamten is that it is directed at trying to block the overly vigorous contractile proteins in the heart, so it is a highly targeted, focused way of addressing the key problem in these patients. The study demonstrated a really large improvement in patient quality of life where they were on the drug, and when they went off the drug, the quality of life went away.
Some specialists are now hypothesizing that it may work for other cardiovascular diseases where the heart either beats too strongly or it does not relax well enough, but just having a treatment for HCM is a really big deal. For years we have not been very aggressive in identifying and treating these patients because there have not been great treatments available, so this could lead to a new era.
Regenerating Organs
David Andrijevic, Associate Research Scientist in neuroscience at Yale School of Medicine
As soon as the heartbeat stops, a whole chain of biochemical processes resulting from ischemia – the lack of blood flow, oxygen and nutrients – begins to destroy the body’s cells and organs. My colleagues and I at Yale School of Medicine have been investigating whether we can recover organs after prolonged ischemia, with the main goal of expanding the organ donor pool.
Earlier this year we published a paper in which we showed that we could use technology to restore blood circulation, other cellular functions and even heart activity in pigs, one hour after their deaths. This was done using a perfusion technology to substitute heart, lung and kidney function, and deliver an experimental cell protective fluid to these organs which aimed to stop cell death and aid in the recovery.
One of the aims of this technology is that it can be used in future to lengthen the time window for recovering organs for donation after a person has been declared dead, a logistical hurdle which would allow us to substantially increase the donor pool. We might also be able to use this cell protective fluid in studies to see if it can help people who have suffered from strokes and myocardial infarction. In future, if we managed to achieve an adequate brain recovery – and the brain, out of all the organs, is the most susceptible to ischemia – this might also change some paradigms in resuscitation medicine.
Antibody-Drug Conjugates for Cancer
Yosi Shamay, Cancer Nanomedicine and Nanoinformatics researcher at the Technion Israel Institute of Technology
For the past four or five years, antibody-drug conjugates (ADCs) - a cancer drug where you have an antibody conjugated to a toxin - have been used only in patients with specific cancers that display high expression of a target protein, for example HER2-positive breast cancer. But in 2022, there have been clinical trials where ADCs have shown remarkable results in patients with low expression of HER2, which is something we never expected to see.
In July 2022, AstraZeneca published the results of a clinical trial, which showed that an ADC called trastuzumab deruxtecan can offer a very big survival benefit to breast cancer patients with very little expression of HER2, levels so low that they would be borderline undetectable for a pathologist. They got a strong survival signal for patients with very aggressive, metastatic disease.
I think this is very interesting and important because it means that it might pave the way to include more patients in clinical trials looking at ADCs for other cancers, for example lymphoma, colon cancer, lung cancers, even if they have low expression of the protein target. It also holds implications for CAR-T cells - where you genetically engineer a T cell to attack the cancer - because the concept is very similar. If we now know that an ADC can have a survival benefit, even in patients with very low target expression, the same might be true for T cells.
Look back further: Breakthroughs of 2021
https://leaps.org/6-biotech-breakthroughs-of-2021-that-missed-the-attention-they-deserved/
The Secrets of a Long Life from the U.S.’s Top Longevity Hot Spot
People are living longer in the world's richest countries, according to a recent Pew Report. Certain areas, in particular, have drawn the attention of researchers who study longevity because in those places, living to 100 is not unusual.
"If you want to live longer, shape your environment."
At 8000 feet up, Summit County, Colorado is a longevity hotspot. Surrounded by mountains that soar to more than 14,000 feet, the population of nearly 31,000 brags the highest expected lifespan in the United States, at 86.83 years. For comparison, the average life expectancy in the U.S. is 78.6 years.
So, what is it about living in Summit County that has brought about this high honor?
Despite popular belief, it's not about genes. Only about "20-30 percent of longevity can be predicted by genetics," longevity researcher Howard S. Friedman wrote in an email exchange. Friedman, a professor at the University of California at Riverside, co-authored a book about a famous study that followed participants for eight decades to learn what traits and factors contribute to a long life.
"About half is behavioral (including environmental)," Friedman says. "The rest is random (chance)." His longevity research is based on work that began in 1921 by Stanford University psychologist Lewis Terman. To discern the keys to longevity, Friedman and colleagues spent 20 years looking back at the lives led by the 1500 "gifted" 11-year old boys and girls who were born in 1910 and participated in Terman's study.
"We found that ambition, perseverance, and high motivation … predicted not only success but also longevity: Stressful job and hard work, long life!" Friedman says.
Longevity expert Dan Buettner agrees that an individual's environment is key. Buettner studies what he calls Blue Zones, where people "naturally live longer." But, unlike the five Blue Zones in the world -- Okinawa, Japan; Sardinia, Italy; Nicoya, Costa Rica; Ikaria, Greece; and Loma Linda, California — the majority of the Summit County population chose to move to the mountain towns that make up the region. Because Buettner believes that people can be taught to live longer, he sees Summit County as an instructive locale.
Like the Blue Zones, people in Summit County "do not pursue healthy lifestyles; [rather] it ensues," he says. "Blue Zones have the benefit of traditional patterns of eating and traditional rhythms of life. So they tend to be places where people walk to work, to a friend's house … [and] Blue Zone people eat the right food -- not because they have better individual responsibility or discipline; they simply live in an environment where beans, greens, nuts and grains are cheapest and most accessible."
"If you want to live longer," Buettner says, "shape your environment."
But an individual's environment can be affected by a number of factors, including socioeconomics, race, quality of and access to health care, as well as behavioral and metabolic risks. While the residents of Summit County smoke less and exercise more than those in regions with shorter life spans, they also have higher incomes and levels of education and lower unemployment.
"The healthiest individuals in The Longevity Project…lived meaningful, committed lives. They worked hard and played hard."
Gloria Breigenzer moved to Summit County 20 years ago with her husband. "We wanted to ski and ride horses up in the mountains," says Breigenzer. The 75-year-old still works part time as a hair dresser, goes to the gym every day, lifts weights and does yoga.
"I don't know why people don't want to get up and go out and work out and do stuff. I do," says the grandmother, who also exercises her rescue horse five days a week and for the past 15 years has done swing, country two step, and jazz dance in a group with her 77-year-old husband. She's also taking kiteboarding lessons and for the past two years has spent every afternoon studying Spanish.
Pete and Judy Rubin, both 65, retired to Summit County nearly two years ago from Cleveland. In Colorado, "socializing doesn't revolve around food," says Pete. "In Cleveland it always did…[Being outside] in summer or in winter is just easy. Skiing, on a bike, taking a hike, mowing the lawn, looking at a mountain instead of having someone else do it."
The Summit County approach resonates for researcher Friedman, who says that it's the "constellations of habits and patterns of living," that stood out most to him in his study. "Throw away your lists...The healthiest individuals in The Longevity Project…lived meaningful, committed lives. They worked hard and played hard. They were very persistent and responsible, and they were dedicated to things and people beyond themselves."
The following are some of the common denominators found in populations that live longer, including those who live in Summit County:
Plant-based diet: "Eat meat, no more than 5 times a month … [and] 95 percent of all the calories you take in should be whole plant-based foods," says Buettner.
Know your purpose: Buettner found that having and understanding your sense of purpose is worth up to seven years of extra life expectancy.
Have friendships: "You should have three to five friends who are healthy themselves who you can call on a bad day and they'll care," says Buettner.
Be on the move: Populations in zones where there is higher longevity "move naturally" as part of their day. It's not about diets. "No diet in the history of the world has worked for more than 5 percent of people after two years," says Buettner.
Relieve stress: "You should have some daily practices that help you downshift," says Buettner. It "could be taking naps, or meditation practice, or a habit of praying or a habit of doing happy hours."
Employ a family first rule: "Successful centenarians put their families first," explains Buettner. "And that means keeping your aging parents nearby, being seriously invested in your partner and if you have kids, you make them a priority."
It's these "key patterns of living [that] tend to make you both healthier and happier," says Friedman. "And health and happiness often then mutually reinforce each other."
Here's What It Looks Like to Seek Therapy for Climate Change Anxiety
Three months after Gretchen bought a house in Grass Valley, California, the most destructive and fatal wildfire in the state's history ravaged the towns about 40 miles northwest of her.
"For a long time, I kept on having this vision of what my town will look like if one of those firestorms happens, and I felt like I needed to work on that."
The Camp Fire of November 2018 was noteworthy not just because of its damaging scale but because of what started it all: a spark from a faulty transmission line owned by the Pacific Gas & Electric Company, which services nearly two-thirds of California.
PG&E reacted by announcing almost a year later that in advance of days with a high fire risk, it would proactively institute power outages in 17 counties throughout the northern part of the state, including the one where Gretchen lives. The binary options seemed to be: cause another fire or intermittently plunge tens of thousands of people into literal and figurative darkness, impacting emergency services, health, food, internet, gas, and any other electrified necessity or convenience of modern life.
This summer, in between the end of the Camp Fire and the beginning of the blackouts, Gretchen, who asked to keep her last name private, decided it was time to seek counseling for climate-related anxiety.
"That was a very traumatic experience to go through," Gretchen, 39, says, describing what it was like to have recently settled in this increasingly fire-prone part of her home state, and later witnessing a colleague flee California altogether after his own home burned down and he couldn't afford to stay. "For a long time, I kept on having this vision of what my town will look like if one of those firestorms happens, and I felt like I needed to work on that."
While research on climate anxiety—or, more broadly, the effects of climate change on mental health—has been slowly but surely piling up, the actual experience of diagnosing and treating it is less well-documented in both media and academia. An ongoing Yale University study of American perceptions of climate change shows an increasing proportion of concern: In 2018, 29 percent of 1,114 survey respondents said they were "very worried" about climate change, up from 16 percent in 2008. But there are no parallel large-scale studies of whether a similar proportion of people are in therapy for climate change-related mental health issues.
That might be because many would-be clients don't yet realize that this is a valid concern for which to seek out professional support. It could also be because there are no definitive or unifying resources for therapists who are counseling people on the topic. Climate anxiety is notably absent by name from the Diagnostic and Statistical Manual of Mental Disorders (DSM), the psychological gospel for everyone from clinicians to lawmakers. The manual was last updated in 2012 (and published in 2013), just when the first documents of climate anxiety were beginning to crop up.
A small 2013 study surveyed college students in the U.S. and Europe to try and answer the question: Is habitually worrying about the environment a mental health concern if it's a response to a real threat? The study concluded: "...those who habitually worry about the ecology are not only lacking in any psychopathology, but demonstrate a constructive and adaptive response to a serious problem." In other words, worrying about a concrete external concern like the state of the environment is on a different plane than habitually worrying about an internal concern, like feelings of inadequacy. Therapy may still help with the former, but the diagnostic framework could ultimately look different than what is typically used in generalized anxiety.
For now, the best resource for therapists counseling patients battling what is sometimes dubbed "ecoanxiety" is a 70-page booklet called "Mental Health and Our Changing Climate: Impacts, Implications, and Guidance," whose publication was co-sponsored by the American Psychological Association, which publishes the DSM. It's been through two editions already, the first in 2014 and the second in 2017.
"It's not clear to me that [climate anxiety] would merit its own diagnosis, at least at this point," says Susan Clayton, who was the lead author on the 2017 edition and who studies this area at The College of Wooster, but doesn't counsel people directly. However, she says, "I do think that there are some differences [from generalized anxiety], and one of the important differences is, of course, that there's some realism here."
Clayton says that group therapy may be a particularly useful way to affirm for people that they're not the only one experiencing climate anxiety, especially in communities where it might be taboo to not only affirm the existence of climate change but to be openly affected by it.
On drawing therapeutic inspiration from historical examples of other global dangers—such as the widespread fear of nuclear threat during the Cold War—Clayton says: "That was such a different time and they were thinking differently about mental health, but I think in many ways the fear is very similar. It's not like worrying about your finances, it's worrying about the end of the world. So that sort of existential component, and the fact that it's shared, both are very similar here."
There are precedents that therapists can refer to for guidance on helping clients managing climate anxiety, like the approaches used to support people dealing with a terminal illness or battling systemic racism. Such treatments need to stay rooted in the reality of the trigger.
"You don't want to say to them, 'That's not a real thing,'" Clayton explains. "So I think of [climate anxiety] like that. It does mean that the therapeutic focus is not going to be on trying to get people to be reasonable," which is to say that their anxiety is not inherently unreasonable.
"I think it is important to recognize that the anxieties have a legitimate basis," she adds.
"I feel more comfortable now being prepared, being prudent, but not dwelling on it all the time."
Gretchen's reality is now one of adapting to living an off-the-grid lifestyle that she didn't intentionally sign up for. She puts gas in her car in advance of blackouts, and waits to see week-by-week if the school where she teaches second and third grade, in the foothills of Tahoe National Park, will be closed. Her union has yet to figure out how this stop-and-go schedule will affect her salary; she has to keep rescheduling parent-teacher conferences; and she no longer knows when the last day of school will be—existing summer plans for her personal life be damned. Even her interview for this story was affected by this instability.
While trying to schedule a time to talk, she wrote, "Speaking of climate change, I may not have work the rest of the week due to PG&E power outages. If so I will have a very flexible schedule." Later, she suddenly had to decline. "As it turns out, the power's not going out. I will be at work."
In therapy sessions, she works with her counselor to focus on preparedness, where possible, and to specifically frame that preparedness as a source of regaining some of the stability she's lost rather than a sign of imminent trouble. That nuance became necessary after a training at work had the opposite effect.
"We've gone through scenarios [where] if a firestorm happens and we don't have time to evacuate, we have to gather all the children into the cafeteria and fend off the flames ourselves with help from the fire department, and keep them alive if we can't get out in time," she says. "After that day, or that training, that really scared me."
Her therapist uses a type of psychotherapy called eye movement desensitization and reprocessing (EMDR) to help Gretchen move away from traumatizing images, such as picturing her town on fire, while emphasizing what it is that she can control, such as making sure her car has a full tank, in case she needs to evacuate. EMDR has been shown to help people with post-traumatic stress disorder (PTSD) and the World Health Organization offers practice guidelines around it.
"I feel more comfortable now being prepared, being prudent, but not dwelling on it all the time," she says. "I feel a little less heightened anxiety and have stopped replaying [those images] in my mind."
Overall, the type of support Gretchen receives is based on pre-existing tools for managing other well-established mental health burdens like PTSD and generalized anxiety. Although no definitive, new practices have specifically emerged around climate anxiety on a comprehensive scale yet, Gretchen says she was nonetheless met with compassion when she first approached a therapist about the topical source of her anxiety, and doesn't feel that her care is lacking in any way.
"I don't know enough to know whether or how it should become its own diagnosis, but I feel like it's something that is still evolving. Down the road, as we see more populations having to move, more refugees, more real effects, that might change," she says. "For me, using the old tools in a new way has been effective at this point."
Gretchen hasn't yet explored with her therapist the more existential worries that climate change dredges up for her—worries about whether or not to have children, and if it was a mistake to settle down in Grass Valley. She's only been in therapy for her climate anxiety since the summer (although she has intermittently sought out professional mental health support for other reasons over the last eight years), and it will take time to get to these bigger issues, she says. She's not sure yet whether that part of her counseling will look different than what's she's done so far.
But she does wonder about the overall usefulness of pathologizing what, as Clayton said, are legitimate anxieties. She has the same question when it comes to providing mental health support for her students, many of whom live in poverty.
"Is it just putting a bandaid on something that is unfixable, or is unfair?" she ponders. But de-escalating the psychological toll that climate change can have on people is crucial to giving them back the energy to deal with the problem itself, not just their reaction to the problem. Clayton believes that engaging in climate activism can provide solace for the people who do have that energy.
"This is a social issue, and there's obviously lots and lots of climate activism," she says. "You might not be comfortable being politically active, but I think getting involved in some way, and addressing the issue, would help people feel much more empowered, and would help with the experience of climate anxiety."
"Remember that nature is not just a source of anxiety, it's also a source of replenishment and restoration."
As far as what shape this personal involvement takes, an increasingly vocal movement of people is calling for a refocus. They say the onus of reversing, or at least stymying, the situation should fall on the big businesses and governments that have been too slow to act, not on individual consumer actions, like buying sustainably made clothes, divesting from the meat and dairy industry, or driving an electric car.
But outside of formal therapy and even activism, however that looks, Clayton has another suggestion for combating climate anxiety, and it's one that is surprising in its simplicity: Go outside, and take stock of that which boldly continues to exist.
"People who are anxious about climate change, it's partly about the survival of the species, but it's partly about the sense that, 'Something I care about is being destroyed,'" she says. "Remember that nature is not just a source of anxiety, it's also a source of replenishment and restoration."