How Can We Decide If a Biomedical Advance Is Ethical?
"All fixed, fast-frozen relations, with their train of ancient and venerable prejudices and opinions, are swept away, all new-formed ones become antiquated before they can ossify. All that is solid melts into air, all that is holy is profaned…"
On July 25, 1978, Louise Brown was born in Oldham, England, the first human born through in vitro fertilization, through the work of Patrick Steptoe, a gynecologist, and Robert Edwards, a physiologist. Her birth was greeted with strong (though not universal) expressions of ethical dismay. Yet in 2016, the latest year for which we have data, nearly two percent of the babies born in the United States – and around the same percentage throughout the developed world – were the result of IVF. Few, if any, think of these children as unnatural, monsters, or freaks or of their parents as anything other than fortunate.
How should we view Dr. He today, knowing that the world's eventual verdict on the ethics of biomedical technologies often changes?
On November 25, 2018, news broke that Chinese scientist, Dr. He Jiankui, claimed to have edited the genomes of embryos, two of whom had recently become the new babies, Lulu and Nana. The response was immediate and overwhelmingly negative.
Times change. So do views. How will Dr. He be viewed in 40 years? And, more importantly, how should we view him today, knowing that the world's eventual verdict on the ethics of biomedical technologies often changes? And when what biomedicine can do changes with vertiginous frequency?
How to determine what is and isn't ethical is above my pay grade. I'm a simple law professor – I can't claim any deeper insight into how to live a moral life than the millennia of religious leaders, philosophers, ethicists, and ordinary people trying to do the right thing. But I can point out some ways to think about these questions that may be helpful.
First, consider two different kinds of ethical commands. Some are quite specific – "thou shalt not kill," for example. Others are more general – two of them are "do unto others as you would have done to you" or "seek the greatest good for the greatest number."
Biomedicine in the last two centuries has often surprised us with new possibilities, situations that cultures, religions, and bodies of ethical thought had not previously had to consider, from vaccination to anesthesia for women in labor to genome editing. Sometimes these possibilities will violate important and deeply accepted precepts for a group or a person. The rise of blood transfusions around World War I created new problems for Jehovah's Witnesses, who believe that the Bible prohibits ingesting blood. The 20th century developments of artificial insemination and IVF both ran afoul of Catholic doctrine prohibiting methods other than "traditional" marital intercourse for conceiving children. If you subscribe to an ethical or moral code that contains prohibitions that modern biomedicine violates, the issue for you is stark – adhere to those beliefs or renounce them.
If the harms seem to outweigh the benefits, it's easy to conclude "this is worrisome."
But many biomedical changes violate no clear moral teachings. Is it ethical or not to edit the DNA of embryos? Not surprisingly, the sacred texts of various religions – few of which were created after, at the latest, the early 19th century, say nothing specific about this. There may be hints, precedents, leanings that could argue one way or another, but no "commandments." In that case, I recommend, at least as a starting point, asking "what are the likely consequences of these actions?"
Will people be, on balance, harmed or helped by them? "Consequentialist" approaches, of various types, are a vast branch of ethical theories. Personally I find a completely consequentialist approach unacceptable – I could not accept, for example, torturing an innocent child even in order to save many lives. But, in the absence of a clear rule, looking at the consequences is a great place to start. If the harms seem to outweigh the benefits, it's easy to conclude "this is worrisome."
Let's use that starting place to look at a few bioethical issues. IVF, for example, once proven (relatively) safe seems to harm no one and to help many, notably the more than 8 million children worldwide born through IVF since 1978 – and their 16 million parents. On the other hand, giving unknowing, and unconsenting, intellectually disabled children hepatitis A harmed them, for an uncertain gain for science. And freezing the heads of the dead seems unlikely to harm anyone alive (except financially) but it also seems almost certain not to benefit anyone. (Those frozen dead heads are not coming back to life.)
Now let's look at two different kinds of biomedical advances. Some are controversial just because they are new; others are controversial because they cut close to the bone – whether or not they violate pre-established ethical or moral norms, they clearly relate to them.
Consider anesthesia during childbirth. When first used, it was controversial. After all, said critics, in Genesis, the Bible says God told Eve, "I will greatly multiply Your pain in childbirth, In pain you will bring forth children." But it did not clearly prohibit pain relief and from the advent of ether on, anesthesia has been common, though not universal, in childbirth in western societies. The pre-existing ethical precepts were not clear and the consequences weighed heavily in favor of anesthesia. Similarly, vaccination seems to violate no deep moral principle. It was, and for some people, still is just strange, and unnatural. The same was true of IVF initially. Opposition to all of these has faded with time and familiarity. It has not disappeared – some people continue to find moral or philosophical problems with "unnatural" childbirth, vaccination, and IVF – but far fewer.
On the other hand, human embryonic stem cell research touches deeper issues. Human embryos are destroyed to make those stem cells. Reasonable people disagree on the moral status of the human embryo, and the moral weight of its destruction, but it does at least bring into play clear and broadly accepted moral precepts, such as "Thou shalt not kill." So, at the far side of an individual's time, does euthanasia. More exposure to, and familiarity with, these practices will not necessarily lead to broad acceptance as the objections involve more than novelty.
The first is "what would I do?" The second – what should my government, culture, religion allow or forbid?
Finally, all this ethical analysis must work at two levels. The first is "what would I do?" The second – what should my government, culture, religion allow or forbid? There are many things I would not do that I don't think should be banned – because I think other people may reasonably have different views from mine. I would not get cosmetic surgery, but I would not ban it – and will try not to think ill of those who choose it
So, how should we assess the ethics of new biomedical procedures when we know that society's views may change? More specifically, what should we think of He Jiankui's experiment with human babies?
First, look to see whether the procedure in question violates, at least fairly clearly, some rule in your ethical or moral code. If so, your choice may not be difficult. But if the procedure is unmentioned in your moral code, probably because it was inconceivable to the code's creators, examine the consequences of the act.
If the procedure is just novel, and not something that touches on important moral concerns, looking at the likely consequences may be enough for your ethical analysis –though it is always worth remembering that predicting consequences perfectly is impossible and predicting them well is never certain. If it does touch on morally significant issues, you need to think those issues through. The consequences may be important to your conclusions but they may not be determinative.
And, then, if you conclude that it is not ethical from your perspective, you need to take yet another step and consider whether it should be banned for people who do not share your perspective. Sometimes the answer will be yes – that psychopaths may not view murder as immoral does not mean we have to let them kill – but sometimes it will be no.
What does this say about He Jiankui's experiment? I have no qualms in condemning it, unequivocally. The potential risks to the babies grossly outweighed any benefits to them, and to science. And his secret work, against a near universal scientific consensus, privileged his own ethical conclusions without giving anyone else a vote, or even a voice.
But if, in ten or twenty years, genome editing of human embryos is shown to be safe (enough) and it is proposed to be used for good reasons – say, to relieve human suffering that could not be treated in other good ways – and with good consents from those directly involved as well as from the relevant society and government – my answer might well change. Yours may not. Bioethics is a process for approaching questions; it is not a set of universal answers.
This article opened with a quotation from the 1848 Communist Manifesto, referring to the dizzying pace of change from industrialization and modernity. You don't need to be a Marxist to appreciate that sentiment. Change – especially in the biosciences – keeps accelerating. How should we assess the ethics of new biotechnologies? The best we can, with what we know, at the time we inhabit. And, in the face of vast uncertainty, with humility.
Gene Transfer Leads to Longer Life and Healthspan
The naked mole rat won’t win any beauty contests, but it could possibly win in the talent category. Its superpower: fighting the aging process to live several times longer than other animals its size, in a state of youthful vigor.
It’s believed that naked mole rats experience all the normal processes of wear and tear over their lifespan, but that they’re exceptionally good at repairing the damage from oxygen free radicals and the DNA errors that accumulate over time. Even though they possess genes that make them vulnerable to cancer, they rarely develop the disease, or any other age-related disease, for that matter. Naked mole rats are known to live for over 40 years without any signs of aging, whereas mice live on average about two years and are highly prone to cancer.
Now, these remarkable animals may be able to share their superpower with other species. In August, a study provided what may be the first proof-of-principle that genetic material transferred from one species can increase both longevity and healthspan in a recipient animal.
There are several theories to explain the naked mole rat’s longevity, but the one explored in the study, published in Nature, is based on the abundance of large-molecule high-molecular mass hyaluronic acid (HMM-HA).
A small molecule version of hyaluronic acid is commonly added to skin moisturizers and cosmetics that are marketed as ways to keep skin youthful, but this version, just applied to the skin, won’t have a dramatic anti-aging effect. The naked mole rat has an abundance of the much-larger molecule, HMM-HA, in the chemical-rich solution between cells throughout its body. But does the HMM-HA actually govern the extraordinary longevity and healthspan of the naked mole rat?
To answer this question, Dr. Vera Gorbunova, a professor of biology and oncology at the University of Rochester, and her team created a mouse model containing the naked mole rat gene hyaluronic acid synthase 2, or nmrHas2. It turned out that the mice receiving this gene during their early developmental stage also expressed HMM-HA.
The researchers found that the effects of the HMM-HA molecule in the mice were marked and diverse, exceeding the expectations of the study’s co-authors. High-molecular mass hyaluronic acid was more abundant in kidneys, muscles and other organs of the Has2 mice compared to control mice.
In addition, the altered mice had a much lower incidence of cancer. Seventy percent of the control mice eventually developed cancer, compared to only 57 percent of the altered mice, even after several techniques were used to induce the disease. The biggest difference occurred in the oldest mice, where the cancer incidence for the Has2 mice and the controls was 47 percent and 83 percent, respectively.
With regard to longevity, Has2 males increased their lifespan by more than 16 percent and the females added 9 percent. “Somehow the effect is much more pronounced in male mice, and we don’t have a perfect answer as to why,” says Dr. Gorbunova. Another improvement was in the healthspan of the altered mice: the number of years they spent in a state of relative youth. There’s a frailty index for mice, which includes body weight, mobility, grip strength, vision and hearing, in addition to overall conditions such as the health of the coat and body temperature. The Has2 mice scored lower in frailty than the controls by all measures. They also performed better in tests of locomotion and coordination, and in bone density.
Gorbunova’s results show that a gene artificially transferred from one species can have a beneficial effect on another species for longevity, something that had never been demonstrated before. This finding is “quite spectacular,” said Steven Austad, a biologist at the University of Alabama at Birmingham, who was not involved in the study.
Just as in lifespan, the effects in various organs and systems varied between the sexes, a common occurrence in longevity research, according to Austad, who authored the book Methuselah’s Zoo and specializes in the biological differences between species. “We have ten drugs that we can give to mice to make them live longer,” he says, “and all of them work better in one sex than in the other.” This suggests that more attention needs to be paid to the different effects of anti-aging strategies between the sexes, as well as gender differences in healthspan.
According to the study authors, the HMM-HA molecule delivered these benefits by reducing inflammation and senescence (cell dysfunction and death). The molecule also caused a variety of other benefits, including an upregulation of genes involved in the function of mitochondria, the powerhouses of the cells. These mechanisms are implicated in the aging process, and in human disease. In humans, virtually all noncommunicable diseases entail an acceleration of the aging process.
So, would the gene that creates HMM-HA have similar benefits for longevity in humans? “We think about these questions a lot,” Gorbunova says. “It’s been done by injections in certain patients, but it has a local effect in the treatment of organs affected by disease,” which could offer some benefits, she added.
“Mice are very short-lived and cancer-prone, and the effects are small,” says Steven Austad, a biologist at the University of Alabama at Birmingham. “But they did live longer and stay healthy longer, which is remarkable.”
As for a gene therapy to introduce the nmrHas2 gene into humans to obtain a global result, she’s skeptical because of the complexity involved. Gorbunova notes that there are potential dangers in introducing an animal gene into humans, such as immune responses or allergic reactions.
Austad is equally cautious about a gene therapy. “What this study says is that you can take something a species does well and transfer at least some of that into a new species. It opens up the way, but you may need to transfer six or eight or ten genes into a human” to get the large effect desired. Humans are much more complex and contain many more genes than mice, and all systems in a biological organism are intricately connected. One naked mole rat gene may not make a big difference when it interacts with human genes, metabolism and physiology.
Still, Austad thinks the possibilities are tantalizing. “Mice are very short-lived and cancer-prone, and the effects are small,” he says. “But they did live longer and stay healthy longer, which is remarkable.”
As for further research, says Austad, “The first place to look is the skin” to see if the nmrHas2 gene and the HMM-HA it produces can reduce the chance of cancer. Austad added that it would be straightforward to use the gene to try to prevent cancer in skin cells in a dish to see if it prevents cancer. It would not be hard to do. “We don’t know of any downsides to hyaluronic acid in skin, because it’s already used in skin products, and you could look at this fairly quickly.”
“Aging mechanisms evolved over a long time,” says Gorbunova, “so in aging there are multiple mechanisms working together that affect each other.” All of these processes could play a part and almost certainly differ from one species to the next.
“HMM-HA molecules are large, but we’re now looking for a small-molecule drug that would slow it’s breakdown,” she says. “And we’re looking for inhibitors, now being tested in mice, that would hinder the breakdown of hyaluronic acid.” Gorbunova has found a natural, plant-based product that acts as an inhibitor and could potentially be taken as a supplement. Ultimately, though, she thinks that drug development will be the safest and most effective approach to delivering HMM-HA for anti-aging.
In recent years, researchers of Alzheimer’s have made progress in figuring out the complex factors that lead to the disease. Yet, the root cause, or causes, of Alzheimer’s are still pretty much a mystery.
In fact, many people get Alzheimer’s even though they lack the gene variant we know can play a role in the disease. This is a critical knowledge gap for research to address because the vast majority of Alzheimer’s patients don’t have this variant.
A new study provides key insights into what’s causing the disease. The research, published in Nature Communications, points to a breakdown over time in the brain’s system for clearing waste, an issue that seems to happen in some people as they get older.
Michael Glickman, a biologist at Technion – Israel Institute of Technology, helped lead this research. I asked him to tell me about his approach to studying how this breakdown occurs in the brain, and how he tested a treatment that has potential to fix the problem at its earliest stages.
Dr. Michael Glickman is internationally renowned for his research on the ubiquitin-proteasome system (UPS), the brain's system for clearing the waste that is involved in diseases such as Huntington's, Alzheimer's, and Parkinson's. He is the head of the Lab for Protein Characterization in the Faculty of Biology at the Technion – Israel Institute of Technology. In the lab, Michael and his team focus on protein recycling and the ubiquitin-proteasome system, which protects against serious diseases like Alzheimer’s, Parkinson’s, cystic fibrosis, and diabetes. After earning his PhD at the University of California at Berkeley in 1994, Michael joined the Technion as a Senior Lecturer in 1998 and has served as a full professor since 2009.
Dr. Michael Glickman