How mRNA Could Revolutionize Medicine
In November 2020, messenger RNA catapulted into the public consciousness when the first COVID-19 vaccines were authorized for emergency use. Around the same time, an equally groundbreaking yet relatively unheralded application of mRNA technology was taking place at a London hospital.
Over the past two decades, there's been increasing interest in harnessing mRNA — molecules present in all of our cells that act like digital tape recorders, copying instructions from DNA in the cell nucleus and carrying them to the protein-making structures — to create a whole new class of therapeutics.
Scientists realized that artificial mRNA, designed in the lab, could be used to instruct our cells to produce certain antibodies, turning our bodies into vaccine-making factories, or to recognize and attack tumors. More recently, researchers recognized that mRNA could also be used to make another groundbreaking technology far more accessible to more patients: gene editing. The gene-editing tool CRISPR has generated plenty of hype for its potential to cure inherited diseases. But delivering CRISPR to the body is complicated and costly.
"Most gene editing involves taking cells out of the patient, treating them and then giving them back, which is an extremely expensive process," explains Drew Weissman, professor of medicine at the University of Pennsylvania, who was involved in developing the mRNA technology behind the COVID-19 vaccines.
But last November, a Massachusetts-based biotech company called Intellia Therapeutics showed it was possible to use mRNA to make the CRISPR system inside the body, eliminating the need to extract cells out of the body and edit them in a lab. Just as mRNA can instruct our cells to produce antibodies against a viral infection, it can also teach them to produce one of the two components that make up CRISPR — a cutting protein that snips out a problem gene.
"The pandemic has really shown that not only are mRNA approaches viable, they could in certain circumstances be vastly superior to more traditional technologies."
In Intellia's London-based clinical trial, the company applied this for the first time in a patient with a rare inherited liver disease known as hereditary transthyretin amyloidosis with polyneuropathy. The disease causes a toxic protein to build up in a person's organs and is typically fatal. In a company press release, Intellia's president and CEO John Leonard swiftly declared that its mRNA-based CRISPR therapy could usher in a "new era of potential genome editing cures."
Weissman predicts that turning CRISPR into an affordable therapy will become the next major frontier for mRNA over the coming decade. His lab is currently working on an mRNA-based CRISPR treatment for sickle cell disease. More than 300,000 babies are born with sickle cell every year, mainly in lower income nations.
"There is a FDA-approved cure, but it involves taking the bone marrow out of the person, and then giving it back which is prohibitively expensive," he says. It also requires a patient to have a matched bone marrow done. "We give an intravenous injection of mRNA lipid nanoparticles that target CRISPR to the bone marrow stem cells in the patient, which is easy, and much less expensive."
Cancer Immunotherapy
Meanwhile, the overwhelming success of the COVID-19 vaccines has focused attention on other ways of using mRNA to bolster the immune system against threats ranging from other infectious diseases to cancer.
The practicality of mRNA vaccines – relatively small quantities are required to induce an antibody response – coupled with their adaptable design, mean companies like Moderna are now targeting pathogens like Zika, chikungunya and cytomegalovirus, or CMV, which previously considered commercially unviable for vaccine developers. This is because outbreaks have been relatively sporadic, and these viruses mainly affect people in low-income nations who can't afford to pay premium prices for a vaccine. But mRNA technology means that jabs could be produced on a flexible basis, when required, at relatively low cost.
Other scientists suggest that mRNA could even provide a means of developing a universal influenza vaccine, a goal that's long been the Holy Grail for vaccinologists around the world.
"The mRNA technology allows you to pick out bits of the virus that you want to induce immunity to," says Michael Mulqueen, vice president of business development at eTheRNA, a Belgium-based biotech that's developing mRNA-based vaccines for malaria and HIV, as well as various forms of cancer. "This means you can get the immune system primed to the bits of the virus that don't vary so much between strains. So you could actually have a single vaccine that protects against a whole raft of different variants of the same virus, offering more universal coverage."
Before mRNA became synonymous with vaccines, its biggest potential was for cancer treatments. BioNTech, the German biotech company that collaborated with Pfizer to develop the first authorized COVID-19 vaccine, was initially founded to utilize mRNA for personalized cancer treatments, and the company remains interested in cancers ranging from melanoma to breast cancer.
One of the major hurdles in treating cancer has been the fact that tumors can look very different from one person to the next. It's why conventional approaches, such as chemotherapy or radiation, don't work for every patient. But weaponizing mRNA against cancer primes the immune cells with the tumor's specific genetic sequence, training the patient's body to attack their own unique type of cancer.
"It means you're able to think about personalizing cancer treatments down to specific subgroups of patients," says Mulqueen. "For example, eTheRNA are developing a renal cell carcinoma treatment which will be targeted at around 20% of these patients, who have specific tumor types. We're hoping to take that to human trials next year, but the challenge is trying to identify the right patients for the treatment at an early stage."
Repairing Damaged mRNA
While hopes are high that mRNA could usher in new cancer treatments and make CRISPR more accessible, a growing number of companies are also exploring an alternative to gene editing, known as RNA editing.
In genetic disorders, the mRNA in certain cells is impaired due to a rogue gene defect, and so the body ceases to produce a particular vital protein. Instead of permanently deleting the problem gene with CRISPR, the idea behind RNA editing is to inject small pieces of synthetic mRNA to repair the existing mRNA. Scientists think this approach will allow normal protein production to resume.
Over the past few years, this approach has gathered momentum, as some researchers have recognized that it holds certain key advantages over CRISPR. Companies from Belgium to Japan are now looking at RNA editing to treat all kinds of disorders, from Huntingdon's disease, to amyotrophic lateral sclerosis, or ALS, and certain types of cancer.
"With RNA editing, you don't need to make any changes to the DNA," explains Daniel de Boer, CEO of Dutch biotech ProQR, which is looking to treat rare genetic disorders that cause blindness. "Changes to the DNA are permanent, so if something goes wrong, that may not be desirable. With RNA editing, it's a temporary change, so we dose patients with our drugs once or twice a year."
Last month, ProQR reported a landmark case study, in which a patient with a rare form of blindness called Leber congenital amaurosis, which affects the retina at the back of the eye, recovered vision after three months of treatment.
"We have seen that this RNA therapy restores vision in people that were completely blind for a year or so," says de Boer. "They were able to see again, to read again. We think there are a large number of other genetic diseases we could go after with this technology. There are thousands of different mutations that can lead to blindness, and we think this technology can target approximately 25% of them."
Ultimately, there's likely to be a role for both RNA editing and CRISPR, depending on the disease. "I think CRISPR is ideally suited for illnesses where you would like to permanently correct a genetic defect," says Joshua Rosenthal of the Marine Biology Laboratory in Chicago. "Whereas RNA editing could be used to treat things like pain, where you might want to reset a neural circuit temporarily over a shorter period of time."
Much of this research has been accelerated by the COVID-19 pandemic, which has played a major role in bringing mRNA to the forefront of people's minds as a therapeutic.
"The pandemic has really shown that not only are mRNA approaches viable, they could in certain circumstances be vastly superior to more traditional technologies," says Mulqueen. "In the future, I would not be surprised if many of the top pharma products are mRNA derived."
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
With a deadly pandemic sweeping the planet, many are questioning the comfort and security we have taken for granted in the modern world.
A century ago, when an influenza pandemic struck, we barely knew what viruses were.
More than a century after the germ theory, we are still at the mercy of a microbe we can neither treat, nor control, nor immunize against. Even more discouraging is that technology has in some ways exacerbated the problem: cars and air travel allow a new disease to quickly encompass the globe.
Some say we have grown complacent, that we falsely assume the triumphs of the past ensure a happy and prosperous future, that we are oblivious to the possibility of unpredictable "black swan" events that could cause our destruction. Some have begun to lose confidence in progress itself, and despair of the future.
But the new coronavirus should not defeat our spirit—if anything, it should spur us to redouble our efforts, both in the science and technology of medicine, and more broadly in the advance of industry. Because the best way to protect ourselves against future disasters is more progress, faster.
Science and technology have overall made us much better able to deal with disease. In the developed world, we have already tamed most categories of infectious disease. Most bacterial infections, such as tuberculosis or bacterial pneumonia, are cured with antibiotics. Waterborne diseases such as cholera are eliminated through sanitation; insect-borne ones such as malaria through pest control. Those that are not contagious until symptoms appear, such as SARS, can be handled through case isolation and contact tracing. For the rest, such as smallpox, polio, and measles, we develop vaccines, given enough time. COVID-19 could start a pandemic only because it fits a narrow category: a new, viral disease that is highly contagious via pre-symptomatic droplet/aerosol transmission, and that has a high mortality rate compared to seasonal influenza.
A century ago, when an influenza pandemic struck, we barely knew what viruses were; no one had ever seen one. Today we know what COVID-19 is down to its exact genome; in fact, we have sequenced thousands of COVID-19 genomes, and can track its history and its spread through their mutations. We can create vaccines faster today, too: where we once developed them in live animals, we now use cell cultures; where we once had to weaken or inactivate the virus itself, we can now produce vaccines based on the virus's proteins. And even though we don't yet have a treatment, the last century-plus of pharmaceutical research has given us a vast catalog of candidate drugs, already proven safe. Even now, over 50 candidate vaccines and almost 100 candidate treatments are in the research pipeline.
It's not just our knowledge that has advanced, but our methods. When smallpox raged in the 1700s, even the idea of calculating a case-fatality rate was an innovation. When the polio vaccine was trialled in the 1950s, the use of placebo-controlled trials was still controversial. The crucial measure of contagiousness, "R0", was not developed in epidemiology until the 1980s. And today, all of these methods are made orders of magnitude faster and more powerful by statistical and data visualization software.
If you're seeking to avoid COVID-19, the hand sanitizer gel you carry in a pocket or purse did not exist until the 1960s. If you start to show symptoms, the pulse oximeter that tests your blood oxygenation was not developed until the 1970s. If your case worsens, the mechanical ventilator that keeps you alive was invented in the 1950s—in fact, no form of artificial respiration was widely available until the "iron lung" used to treat polio patients in the 1930s. Even the modern emergency medical system did not exist until recently: if during the 1918 flu pandemic you became seriously ill, there was no 911 hotline to call, and any ambulance that showed up would likely have been a modified van or hearse, with no equipment or trained staff.
As many of us "shelter in place", we are far more able to communicate and collaborate, to maintain some semblance of normal life, than we ever would have been. To compare again to 1918: long-distance telephone service barely existed at that time, and only about a third of homes in the US even had electricity; now we can videoconference over Zoom and Skype. And the enormous selection and availability provided by online retail and food delivery have kept us stocked and fed, even when we don't want to venture out to the store.
Let the virus push us to redouble our efforts to make scientific, technological, and industrial progress on all fronts.
"Black swan" calamities can strike without warning at any time. Indeed, humanity has always been subject to them—drought and frost, fire and flood, war and plague. But we are better equipped now to deal with them than ever before. And the more progress we make, the better prepared we'll be for the next one. The accumulation of knowledge, technology, industrial infrastructure, and surplus wealth is the best buffer against any shock—whether a viral pandemic, a nuclear war, or an asteroid impact. In fact, the more worried we are about future crises, the more energetically we should accelerate science, technology and industry.
In this sense, we have grown complacent. We take the modern world for granted, so much so that some question whether further progress is even still needed. The new virus proves how much we do need it, and how far we still have to go. Imagine how different things would be if we had broad-spectrum antiviral drugs, or a way to enhance the immune system to react faster to infection, or a way to detect infection even before symptoms appear. These technologies may seem to belong to a Star Trek future—but so, at one time, did cell phones.
The virus reminds us that nature is indifferent to us, leaving us to fend entirely for ourselves. As we go to war against it, let us not take the need for such a war as reason for despair. Instead, let it push us to redouble our efforts to make scientific, technological, and industrial progress on all fronts. No matter the odds, applied intelligence is our best weapon against disaster.