This Woman’s Cancer Battle Could Help You Avoid the Same Fate
Nancy Cappello was proactive. When she turned 36, she had a baseline mammogram, a standard medical recommendation in the late 1980s and early 1990s as a comparison tool for future screenings. At 40, Cappello started getting them annually.
Her breast surgeon estimated the cancer had been festering for four to five years under the radar of her annual mammograms.
Six weeks after her 11th-consecutive normal mammogram, she was diagnosed with Stage IIIc breast cancer.
A doctor felt a lump while doing a breast exam during her annual physical and a subsequent ultrasound detected cancer that had spread to 13 lymph nodes. That's when Cappello, then 51, learned she had dense breast tissue, making mammography less likely to detect tumors in her breasts.
She also discovered through her own research that she was among the 40 to 50 percent of women with dense breast tissue — almost half the female population — but medical protocol did not require physicians to inform women of their dense tissue status. If she had known, she said, she would have gotten an ultrasound every year in addition to a mammogram that could have detected the cancer much earlier. Cappello said her breast surgeon estimated the cancer had been festering for four to five years under the radar of her annual mammograms.
Although ultrasound as a cancer screening tool has been available for decades, technological advances are helping doctors find more invasive cancers in women with dense breasts, in turn giving women who know their tissue status the opportunity for earlier detection and treatment.
"We know that the gold standard for breast cancer screening is mammography, but in women with dense breast tissue, up to one third of breast cancers can be missed with this modality alone."
Dr. Georgia Giakoumis Spear, chief of the department of breast imaging at NorthShore University HealthSystem in suburban Chicago and assistant professor of radiology at the University of Chicago, has been a leader in developing standards for the use of new ultrasound technology. She is leading a study to develop more specific national guidelines around the use of Automated Whole Breast Tissue Ultrasound (ABUS), a non-invasive procedure in which sound waves are used to scan breast tissue while a patient lies on her back with her arm over her head.
Approved by the Food and Drug Administration in 2012, ABUS provides higher quality 3D images and faster delivery to provide more accurate results than past ultrasound technology. The scan does not involve radiation, and a practitioner can complete the process in 15 to 20 minutes, from patient preparation to image creation. NorthShore has been using ABUS since 2015, Dr. Spear said, and the technology can improve breast cancer detection in women with dense breasts by up to 55 percent.
"We know that the gold standard for breast cancer screening is mammography, but in women with dense breast tissue, up to one third of breast cancers can be missed with this modality alone," Spear says. "And when we supplement screening with ultrasound in this population of women, we have found a large number of cancers by ultrasound that are not visible on the mammogram."
Mammography should still be used as the first step for breast cancer detection, but if an initial mammogram shows that a patient has dense breast tissue, studies encourage discussion of additional screening with ultrasound.
On a mammogram, dense tissue appears white. So do cancerous masses, making them easy to miss.
A radiologist determines tissue density, according to the American College of Radiology's Breast Imaging Reporting and Data System (BI-RADS). "A" and "B" breast density categories designate ratios of mostly fatty, or non-dense tissues, while the "C" and "D" categories designate heterogeneously dense and extremely dense tissue, respectively. Such patients would be classified as having dense tissue. Younger women, women with lower levels of body fat and women undergoing hormone therapy are more likely to have C and D breast density.
On a mammogram, dense tissue appears white. So do cancerous masses, making them easy to miss. Fatty tissue, in comparison, appears black, making tumors easier to spot.
The FDA stated among its policy goals for 2018 that it's placing an improved focus on recognizing technological advances to help "ensure women get the most relevant, up-to-date information about their breast density, which is now recognized as a risk factor for breast cancer." An article in the March 2018 Journal of the American College of Radiology recommended supplemental screening for women with higher-than-average breast cancer risk, placing women with dense breast tissue in that category.
To be sure, some in the medical community are reluctant to push for ultrasounds, saying that a mammogram might be enough even if the woman has dense breast tissue. A patient is advised to discuss the option of ultrasound with her physician and they can decide from there.
Access to such information became political for Cappello after her diagnosis in 2004. She said that as she underwent six surgeries, a mastectomy, chemotherapy, radiation and hormone therapy, she asked doctors why they weren't required to inform women of their dense breast tissue status. Her dissatisfaction with their responses led to the formation of Are You Dense, Inc., an advocacy group aimed to inform women of their medical options while working to pass legislation mandating that women know their tissue status. Other legislation has focused on mandating insurance coverage for breast ultrasounds.
Nancy Cappello.
(Courtesy)
Cappello's work led Connecticut to become the first state to pass an information law in 2009, and 35 states now have similar requirements. Depending on the state, the law could mandate that certain language or information about breast density be included in the patient's mammogram results, or require physicians to tell women about dense tissue if their breast density falls in the BI-RADS categories C and D. Other states might require that patients be given general information about breast density and advice to discuss their options with a physician. (Note: There is a chart on Cappello's website that shows what laws exist – or don't – in each state.)
Through her site and social media, she's connected with other women who've lobbied for laws in their states, including Dr. Spear, who recently testified before legislative committees in Illinois as they considered companion bills. The Illinois legislation is expected to be signed into law this summer.
"There should be no excuses," Cappello says. "Women should have this information. There should be no concealing or hiding of her status."
A new type of cancer therapy is shrinking deadly brain tumors with just one treatment
Few cancers are deadlier than glioblastomas—aggressive and lethal tumors that originate in the brain or spinal cord. Five years after diagnosis, less than five percent of glioblastoma patients are still alive—and more often, glioblastoma patients live just 14 months on average after receiving a diagnosis.
But an ongoing clinical trial at Mass General Cancer Center is giving new hope to glioblastoma patients and their families. The trial, called INCIPIENT, is meant to evaluate the effects of a special type of immune cell, called CAR-T cells, on patients with recurrent glioblastoma.
How CAR-T cell therapy works
CAR-T cell therapy is a type of cancer treatment called immunotherapy, where doctors modify a patient’s own immune system specifically to find and destroy cancer cells. In CAR-T cell therapy, doctors extract the patient’s T-cells, which are immune system cells that help fight off disease—particularly cancer. These T-cells are harvested from the patient and then genetically modified in a lab to produce proteins on their surface called chimeric antigen receptors (thus becoming CAR-T cells), which makes them able to bind to a specific protein on the patient’s cancer cells. Once modified, these CAR-T cells are grown in the lab for several weeks so that they can multiply into an army of millions. When enough cells have been grown, these super-charged T-cells are infused back into the patient where they can then seek out cancer cells, bind to them, and destroy them. CAR-T cell therapies have been approved by the US Food and Drug Administration (FDA) to treat certain types of lymphomas and leukemias, as well as multiple myeloma, but haven’t been approved to treat glioblastomas—yet.
CAR-T cell therapies don’t always work against solid tumors, such as glioblastomas. Because solid tumors contain different kinds of cancer cells, some cells can evade the immune system’s detection even after CAR-T cell therapy, according to a press release from Massachusetts General Hospital. For the INCIPIENT trial, researchers modified the CAR-T cells even further in hopes of making them more effective against solid tumors. These second-generation CAR-T cells (called CARv3-TEAM-E T cells) contain special antibodies that attack EFGR, a protein expressed in the majority of glioblastoma tumors. Unlike other CAR-T cell therapies, these particular CAR-T cells were designed to be directly injected into the patient’s brain.
The INCIPIENT trial results
The INCIPIENT trial involved three patients who were enrolled in the study between March and July 2023. All three patients—a 72-year-old man, a 74-year-old man, and a 57-year-old woman—were treated with chemo and radiation and enrolled in the trial with CAR-T cells after their glioblastoma tumors came back.
The results, which were published earlier this year in the New England Journal of Medicine (NEJM), were called “rapid” and “dramatic” by doctors involved in the trial. After just a single infusion of the CAR-T cells, each patient experienced a significant reduction in their tumor sizes. Just two days after receiving the infusion, the glioblastoma tumor of the 72-year-old man decreased by nearly twenty percent. Just two months later the tumor had shrunk by an astonishing 60 percent, and the change was maintained for more than six months. The most dramatic result was in the 57-year-old female patient, whose tumor shrank nearly completely after just one infusion of the CAR-T cells.
The results of the INCIPIENT trial were unexpected and astonishing—but unfortunately, they were also temporary. For all three patients, the tumors eventually began to grow back regardless of the CAR-T cell infusions. According to the press release from MGH, the medical team is now considering treating each patient with multiple infusions or prefacing each treatment with chemotherapy to prolong the response.
While there is still “more to do,” says co-author of the study neuro-oncologist Dr. Elizabeth Gerstner, the results are still promising. If nothing else, these second-generation CAR-T cell infusions may someday be able to give patients more time than traditional treatments would allow.
“These results are exciting but they are also just the beginning,” says Dr. Marcela Maus, a doctor and professor of medicine at Mass General who was involved in the clinical trial. “They tell us that we are on the right track in pursuing a therapy that has the potential to change the outlook for this intractable disease.”
Since the early 2000s, AI systems have eliminated more than 1.7 million jobs, and that number will only increase as AI improves. Some research estimates that by 2025, AI will eliminate more than 85 million jobs.
But for all the talk about job security, AI is also proving to be a powerful tool in healthcare—specifically, cancer detection. One recently published study has shown that, remarkably, artificial intelligence was able to detect 20 percent more cancers in imaging scans than radiologists alone.
Published in The Lancet Oncology, the study analyzed the scans of 80,000 Swedish women with a moderate hereditary risk of breast cancer who had undergone a mammogram between April 2021 and July 2022. Half of these scans were read by AI and then a radiologist to double-check the findings. The second group of scans was read by two researchers without the help of AI. (Currently, the standard of care across Europe is to have two radiologists analyze a scan before diagnosing a patient with breast cancer.)
The study showed that the AI group detected cancer in 6 out of every 1,000 scans, while the radiologists detected cancer in 5 per 1,000 scans. In other words, AI found 20 percent more cancers than the highly-trained radiologists.
Scientists have been using MRI images (like the ones pictured here) to train artificial intelligence to detect cancers earlier and with more accuracy. Here, MIT's AI system, MIRAI, looks for patterns in a patient's mammograms to detect breast cancer earlier than ever before. news.mit.edu
But even though the AI was better able to pinpoint cancer on an image, it doesn’t mean radiologists will soon be out of a job. Dr. Laura Heacock, a breast radiologist at NYU, said in an interview with CNN that radiologists do much more than simply screening mammograms, and that even well-trained technology can make errors. “These tools work best when paired with highly-trained radiologists who make the final call on your mammogram. Think of it as a tool like a stethoscope for a cardiologist.”
AI is still an emerging technology, but more and more doctors are using them to detect different cancers. For example, researchers at MIT have developed a program called MIRAI, which looks at patterns in patient mammograms across a series of scans and uses an algorithm to model a patient's risk of developing breast cancer over time. The program was "trained" with more than 200,000 breast imaging scans from Massachusetts General Hospital and has been tested on over 100,000 women in different hospitals across the world. According to MIT, MIRAI "has been shown to be more accurate in predicting the risk for developing breast cancer in the short term (over a 3-year period) compared to traditional tools." It has also been able to detect breast cancer up to five years before a patient receives a diagnosis.
The challenges for cancer-detecting AI tools now is not just accuracy. AI tools are also being challenged to perform consistently well across different ages, races, and breast density profiles, particularly given the increased risks that different women face. For example, Black women are 42 percent more likely than white women to die from breast cancer, despite having nearly the same rates of breast cancer as white women. Recently, an FDA-approved AI device for screening breast cancer has come under fire for wrongly detecting cancer in Black patients significantly more often than white patients.
As AI technology improves, radiologists will be able to accurately scan a more diverse set of patients at a larger volume than ever before, potentially saving more lives than ever.