How We Can Return to Normal Life in the COVID-19 Era

How We Can Return to Normal Life in the COVID-19 Era

A crowded baseball stadium is the epitome of "getting back to normal."

(© terovesalainen/Adobe)

I was asked recently when life might return to normal. The question is simple but the answer is complex, with many knowns, lots of known unknowns, and some unknown unknowns. But I'll give it my best shot.

Keep Reading Keep Reading
Robert M. Wachter, Md
Robert M. Wachter, MD is Professor and Chair of the Department of Medicine at the University of California, San Francisco, where he is the Holly Smith Distinguished Professor in Science and Medicine and the Benioff Endowed Chair in Hospital Medicine. The department leads the nation in NIH grants and is generally ranked as one of the nation’s best. Wachter is author of 250 articles and 6 books and is a frequent contributor to the New York Times and Wall Street Journal. He coined the term “hospitalist” in 1996 and is often considered the “father” of the hospitalist field, the fastest growing specialty in the history of modern medicine. He is past president of the Society of Hospital Medicine and past chair of the American Board of Internal Medicine. In the safety and quality arenas, he has written two books on the subject, including Understanding Patient Safety, the world’s top selling safety primer. In 2004, he received the John M. Eisenberg Award, the nation’s top honor in patient safety. Thirteen times, Modern Healthcare magazine has ranked him as one of the 50 most influential physician-executives in the U.S.; he was #1 on the list in 2015. His 2015 book, The Digital Doctor: Hope, Hype and Harm at the Dawn of Medicine’s Computer Age, was a New York Times science bestseller. In 2016, he chaired a blue-ribbon commission advising England’s National Health Service on its digital strategy. In 2020, his frequent tweets on Covid-19 were viewed over 50 million times by more than 100,000 followers and serve as a trusted source of information on the clinical, public health, and policy issues surrounding the pandemic.
After spaceflight record, NASA looks to protect astronauts on even longer trips

NASA astronaut Frank Rubio floats by the International Space Station’s “window to the world.” Yesterday, he returned from the longest single spaceflight by a U.S. astronaut on record - over one year. Exploring deep space will require even longer missions.

NASA

At T-minus six seconds, the main engines of the Atlantis Space Shuttle ignited, rattling its capsule “like a skyscraper in an earthquake,” according to astronaut Tom Jones, describing the 1988 launch. As the rocket lifted off and accelerated to three times the force of Earth's gravity, “It felt as if two of my friends were standing on my chest and wouldn’t get off.” But when Atlantis reached orbit, the main engines cut off, and the astronauts were suddenly weightless.

Since 1961, NASA has sent hundreds of astronauts into space while working to making their voyages safer and smoother. Yet, challenges remain. Weightlessness may look amusing when watched from Earth, but it has myriad effects on cognition, movement and other functions. When missions to space stretch to six months or longer, microgravity can impact astronauts’ health and performance, making it more difficult to operate their spacecraft.

Keep Reading Keep Reading
Gail Dutton
Gail Dutton has covered the biopharmaceutical industry as a journalist for the past three decades. She focuses on the intersection of business and science, and has written extensively for GEN – Genetic Engineering & Biotechnology News, Life Science Leader, The Scientist and BioSpace. Her articles also have appeared in Popular Science, Forbes, Entrepreneur and other publications.
A newly discovered brain cell may lead to better treatments for cognitive disorders

Swiss researchers have found a type of brain cell that appears to be a hybrid of the two other main types — and it could lead to new treatments for brain disorders.

Adobe stock

Swiss researchers have discovered a third type of brain cell that appears to be a hybrid of the two other primary types — and it could lead to new treatments for many brain disorders.

The challenge: Most of the cells in the brain are either neurons or glial cells. While neurons use electrical and chemical signals to send messages to one another across small gaps called synapses, glial cells exist to support and protect neurons.

Astrocytes are a type of glial cell found near synapses. This close proximity to the place where brain signals are sent and received has led researchers to suspect that astrocytes might play an active role in the transmission of information inside the brain — a.k.a. “neurotransmission” — but no one has been able to prove the theory.


Keep Reading Keep Reading
Kristin Houser
Kristin Houser is a staff writer at Freethink, where she covers science and tech. Her written work has appeared in Business Insider, NBC News, and the World Economic Forum’s Agenda, among other publications, and Stephen Colbert once talked about a piece on The Late Show, to her delight. Formerly, Kristin was a staff writer for Futurism and wrote several animated and live action web series.