Is It Possible to Predict Your Face, Voice, and Skin Color from Your DNA?
Renowned genetics pioneer Dr. J Craig Venter is no stranger to controversy.
Back in 2000, he famously raced the public Human Genome Project to decode all three billion letters of the human genome for the first time. A decade later, he ignited a new debate when his team created a bacterial cell with a synthesized genome.
Most recently, he's jumped back into the fray with a study in the September issue of the Proceedings of the National Academy of Sciences about the predictive potential of genomic data to identify individual traits such as voice, facial structure and skin color.
The new study raises significant questions about the privacy of genetic data.
His study applied whole-genome sequencing and statistical modeling to predict traits in 1,061 people of diverse ancestry. His approach aimed to reconstruct a person's physical characteristics based on DNA, and 74 percent of the time, his algorithm could correctly identify the individual in a random lineup of 10 people from his company's database.
While critics have been quick to cast doubt on the plausibility of his claims, the ability to discern people's observable traits, or phenotypes, from their genomes may grow more precise as technology improves, raising significant questions about the privacy and usage of genetic information in the long term.
J. Craig Venter showing slides from his recent study on facial prediction at the Summit Conference in Los Angeles on Nov. 3, 2017.
(Courtesy of Kira Peikoff)
Critics: Study Was Incomplete, Problematic
Before even redressing these potential legal and ethical considerations, some scientists simply said the study's main result was invalid. They pointed out that the methodology worked much better in distinguishing between people of different ethnicities than those of the same ethnicity. One of the most outspoken critics, Yaniv Erlich, a geneticist at Columbia University, said, "The method doesn't work. The results were like, 'If you have a lineup of ten people, you can predict eight."
Erlich, who reviewed Venter's paper for Science, where it was rejected, said that he came up with the same results—correctly predicting eight of ten people—by just looking at demographic factors such as age, gender and ethnicity. He added that Venter's recent rebuttal to his criticism was that 'Once we have thousands of phenotypes, it might work better.' But that, Erlich argued, would be "a major breach of privacy. Nobody has thousands of phenotypes for people."
Other critics suggested that the study's results discourage the sharing of genetic data, which is becoming increasingly important for medical research. They go one step further and imply that people's possible hesitation to share their genetic information in public databases may actually play into Venter's hands.
Venter's own company, Human Longevity Inc., aims to build the world's most comprehensive private database on human genotypes and phenotypes. The vastness of this information stands to improve the accuracy of whole genome and microbiome sequencing for individuals—analyses that come at a hefty price tag. Today, Human Longevity Inc. will sequence your genome and perform a battery of other health-related tests at an entry cost of $4900, going up to $25,000. Venter initially agreed to comment for this article, but then could not be reached.
"The bigger issue is how do we understand and use genetic information and avoid harming people."
Opens Up Pandora's Box of Ethical Issues
Whether Venter's study is valid may not be as important as the Pandora's box of potential ethical and legal issues that it raises for future consideration. "I think this story is one along a continuum of stories we've had on the issue of identifiability based on genomic information in the past decade," said Amy McGuire, a biomedical ethics professor at Baylor College of Medicine. "It does raise really interesting and important questions about privacy, and socially, how we respond to these types of scientific advancements. A lot of our focus from a policy and ethics perspective is to protect privacy."
McGuire, who is also the Director of the Center for Medical Ethics and Health Policy at Baylor, added that while protecting privacy is very important, "the bigger issue is how do we understand and use genetic information and avoid harming people." While we've taken "baby steps," she said, towards enacting laws in the U.S. that fight genetic determinism—such as the Genetic Information and Nondiscrimination Act, which prohibits discrimination based on genetic information in health insurance and employment—some areas remain unprotected, such as for life insurance and disability.
J. Craig Venter showing slides from his recent study on facial prediction at the Summit Conference in Los Angeles on Nov. 3, 2017.
(Courtesy of Kira Peikoff)
Physical reconstructions like those in Venter's study could also be inappropriately used by law enforcement, said Leslie Francis, a law and philosophy professor at the University of Utah, who has written about the ethical and legal issues related to sharing genomic data.
"If [Venter's] findings, or findings like them, hold up, the implications would be significant," Francis said. Law enforcement is increasingly using DNA identification from genetic material left at crime scenes to weed out innocent and guilty suspects, she explained. This adds another potentially complicating layer.
"There is a shift here, from using DNA sequencing techniques to match other DNA samples—as when semen obtained from a rape victim is then matched (or not) with a cheek swab from a suspect—to using DNA sequencing results to predict observable characteristics," Francis said. She added that while the former necessitates having an actual DNA sample for a match, the latter can use DNA to pre-emptively (and perhaps inaccurately) narrow down suspects.
"My worry is that if this [the study's methodology] turns out to be sort-of accurate, people will think it is better than what it is," said Francis. "If law enforcement comes to rely on it, there will be a host of false positives and false negatives. And we'll face new questions, [such as] 'Which is worse? Picking an innocent as guilty, or failing to identify someone who is guilty?'"
Risking Privacy Involves a Tradeoff
When people voluntarily risk their own privacy, that involves a tradeoff, McGuire said. A 2014 study that she conducted among people who were very sick, or whose children were very sick, found that more than half were willing to share their health information, despite concerns about privacy, because they saw a big benefit in advancing research on their conditions.
"We've focused a lot of our policy attention on restricting access, but we don't have a system of accountability when there's a breach."
"To make leaps and bounds in medicine and genomics, we need to create a database of millions of people signing on to share their genetic and health information in order to improve research and clinical care," McGuire said. "They are going to risk their privacy, and we have a social obligation to protect them."
That also means "punishing bad actors," she continued. "We've focused a lot of our policy attention on restricting access, but we don't have a system of accountability when there's a breach."
Even though most people using genetic information have good intentions, the consequences if not are troubling. "All you need is one bad actor who decimates the trust in the system, and it has catastrophic consequences," she warned. That hasn't happened on a massive scale yet, and even if it did, some experts argue that obtaining the data is not the real risk; what is more concerning is hacking individuals' genetic information to be used against them, such as to prove someone is unfit for a particular job because of a genetic condition like Alzheimer's, or that a parent is unfit for custody because of a genetic disposition to mental illness.
Venter, in fact, told an audience at the recent Summit conference in Los Angeles that his new study's approach could not only predict someone's physical appearance from their DNA, but also some of their psychological traits, such as the propensity for an addictive personality. In the future, he said, it will be possible to predict even more about mental health from the genome.
What is most at risk on a massive scale, however, is not so much genetic information as demographic identifiers included in medical records, such as birth dates and social security numbers, said Francis, the law and philosophy professor. "The much more interesting and lucrative security breaches typically involve not people interested in genetic information per se, but people interested in the information in health records that you can't change."
Hospitals have been hacked for this kind of information, including an incident at the Veterans Administration in 2006, in which the laptop and external hard drive of an agency employee that contained unencrypted information on 26.5 million patients were stolen from the employee's house.
So, what can people do to protect themselves? "Don't share anything you wouldn't want the world to see," Francis said. "And don't click 'I agree' without actually reading privacy policies or terms and conditions. They may surprise you."
Scientists find enzymes in nature that could replace toxic chemicals
Some 900 miles off the coast of Portugal, nine major islands rise from the mid-Atlantic. Verdant and volcanic, the Azores archipelago hosts a wealth of biodiversity that keeps field research scientist, Marlon Clark, returning for more. “You’ve got this really interesting biogeography out there,” says Clark. “There’s real separation between the continents, but there’s this inter-island dispersal of plants and seeds and animals.”
It’s a visual paradise by any standard, but on a microscopic level, there’s even more to see. The Azores’ nutrient-rich volcanic rock — and its network of lagoons, cave systems, and thermal springs — is home to a vast array of microorganisms found in a variety of microclimates with different elevations and temperatures.
Clark works for Basecamp Research, a biotech company headquartered in London, and his job is to collect samples from ecosystems around the world. By extracting DNA from soil, water, plants, microbes and other organisms, Basecamp is building an extensive database of the Earth’s proteins. While DNA itself isn’t a protein, the information stored in DNA is used to create proteins, so extracting, sequencing, and annotating DNA allows for the discovery of unique protein sequences.
Using what they’re finding in the middle of the Atlantic and beyond, Basecamp’s detailed database is constantly growing. The outputs could be essential for cleaning up the damage done by toxic chemicals and finding alternatives to these chemicals.
Catalysts for change
Proteins provide structure and function in all living organisms. Some of these functional proteins are enzymes, which quite literally make things happen.
“Industrial chemistry is heavily polluting, especially the chemistry done in pharmaceutical drug development. Biocatalysis is providing advantages, both to make more complex drugs and to be more sustainable, reducing the pollution and toxicity of conventional chemistry," says Ahir Pushpanath, who heads partnerships for Basecamp.
“Enzymes are perfectly evolved catalysts,” says Ahir Pushpanath, a partnerships lead at Basecamp. ”Enzymes are essentially just a polymer, and polymers are made up of amino acids, which are nature’s building blocks.” He suggests thinking about it like Legos — if you have a bunch of Lego pieces and use them to build a structure that performs a function, “that’s basically how an enzyme works. In nature, these monuments have evolved to do life’s chemistry. If we didn’t have enzymes, we wouldn’t be alive.”
In our own bodies, enzymes catalyze everything from vision to digesting food to regrowing muscles, and these same types of enzymes are necessary in the pharmaceutical, agrochemical and fine chemical industries. But industrial conditions differ from those inside our bodies. So, when scientists need certain chemical reactions to create a particular product or substance, they make their own catalysts in their labs — generally through the use of petroleum and heavy metals.
These petrochemicals are effective and cost-efficient, but they’re wasteful and often hazardous. With growing concerns around sustainability and long-term public health, it's essential to find alternative solutions to toxic chemicals. “Industrial chemistry is heavily polluting, especially the chemistry done in pharmaceutical drug development,” Pushpanath says.
Basecamp is trying to replace lab-created catalysts with enzymes found in the wild. This concept is called biocatalysis, and in theory, all scientists have to do is find the right enzymes for their specific need. Yet, historically, researchers have struggled to find enzymes to replace petrochemicals. When they can’t identify a suitable match, they turn to what Pushpanath describes as “long, iterative, resource-intensive, directed evolution” in the laboratory to coax a protein into industrial adaptation. But the latest scientific advances have enabled these discoveries in nature instead.
Marlon Clark, a research scientist at Basecamp Research, looks for novel biochemistries in the Azores.
Glen Gowers
Enzyme hunters
Whether it’s Clark and a colleague setting off on an expedition, or a local, on-the-ground partner gathering and processing samples, there’s a lot to be learned from each collection. “Microbial genomes contain complete sets of information that define an organism — much like how letters are a code allowing us to form words, sentences, pages, and books that contain complex but digestible knowledge,” Clark says. He thinks of the environmental samples as biological libraries, filled with thousands of species, strains, and sequence variants. “It’s our job to glean genetic information from these samples.”
“We can actually dream up new proteins using generative AI," Pushpanath says.
Basecamp researchers manage this feat by sequencing the DNA and then assembling the information into a comprehensible structure. “We’re building the ‘stories’ of the biota,” Clark says. The more varied the samples, the more valuable insights his team gains into the characteristics of different organisms and their interactions with the environment. Sequencing allows scientists to examine the order of nucleotides — the organic molecules that form DNA — to identify genetic makeups and find changes within genomes. The process used to be too expensive, but the cost of sequencing has dropped from $10,000 a decade ago to as low as $100. Notably, biocatalysis isn’t a new concept — there have been waves of interest in using natural enzymes in catalysis for over a century, Pushpanath says. “But the technology just wasn’t there to make it cost effective,” he explains. “Sequencing has been the biggest boon.”
AI is probably the second biggest boon.
“We can actually dream up new proteins using generative AI,” Pushpanath says, which means that biocataylsis now has real potential to scale.
Glen Gowers, the co-founder of Basecamp, compares the company’s AI approach to that of social networks and streaming services. Consider how these platforms suggest connecting with the friends of your friends, or how watching one comedy film from the 1990s leads to a suggestion of three more.
“They’re thinking about data as networks of relationships as opposed to lists of items,” says Gowers. “By doing the same, we’re able to link the metadata of the proteins — by their relationships to each other, the environments in which they’re found, the way those proteins might look similar in sequence and structure, their surrounding genome context — really, this just comes down to creating a searchable network of proteins.”
On an Azores island, this volcanic opening may harbor organisms that can help scientists identify enzymes for biocatalysis to replace toxic chemicals.
Emma Bolton
Uwe Bornscheuer, professor at the Institute of Biochemistry at the University of Greifswald, and co-founder of Enzymicals, another biocatalysis company, says that the development of machine learning is a critical component of this work. “It’s a very hot topic, because the challenge in protein engineering is to predict which mutation at which position in the protein will make an enzyme suitable for certain applications,” Bornscheuer explains. These predictions are difficult for humans to make at all, let alone quickly. “It is clear that machine learning is a key technology.”
Benefiting from nature’s bounty
Biodiversity commonly refers to plants and animals, but the term extends to all life, including microbial life, and some regions of the world are more biodiverse than others. Building relationships with global partners is another key element to Basecamp’s success. Doing so in accordance with the access and benefit sharing principles set forth by the Nagoya Protocol — an international agreement that seeks to ensure the benefits of using genetic resources are distributed in a fair and equitable way — is part of the company's ethos. “There's a lot of potential for us, and there’s a lot of potential for our partners to have exactly the same impact in building and discovering commercially relevant proteins and biochemistries from nature,” Clark says.
Bornscheuer points out that Basecamp is not the first company of its kind. A former San Diego company called Diversa went public in 2000 with similar work. “At that time, the Nagoya Protocol was not around, but Diversa also wanted to ensure that if a certain enzyme or microorganism from Costa Rica, for example, were used in an industrial process, then people in Costa Rica would somehow profit from this.”
An eventual merger turned Diversa into Verenium Corporation, which is now a part of the chemical producer BASF, but it laid important groundwork for modern companies like Basecamp to continue to scale with today’s technologies.
“To collect natural diversity is the key to identifying new catalysts for use in new applications,” Bornscheuer says. “Natural diversity is immense, and over the past 20 years we have gained the advantages that sequencing is no longer a cost or time factor.”
This has allowed Basecamp to rapidly grow its database, outperforming Universal Protein Resource or UniProt, which is the public repository of protein sequences most commonly used by researchers. Basecamp’s database is three times larger, totaling about 900 million sequences. (UniProt isn’t compliant with the Nagoya Protocol, because, as a public database, it doesn’t provide traceability of protein sequences. Some scientists, however, argue that Nagoya compliance hinders progress.)
“Eventually, this work will reduce chemical processes. We’ll have cleaner processes, more sustainable processes," says Uwe Bornscheuer, a professor at the University of Greifswald.
With so much information available, Basecamp’s AI has been trained on “the true dictionary of protein sequence life,” Pushpanath says, which makes it possible to design sequences for particular applications. “Through deep learning approaches, we’re able to find protein sequences directly from our database, without the need for further laboratory-directed evolution.”
Recently, a major chemical company was searching for a specific transaminase — an enzyme that catalyzes a transfer of amino groups. “They had already spent a year-and-a-half and nearly two million dollars to evolve a public-database enzyme, and still had not reached their goal,” Pushpanath says. “We used our AI approaches on our novel database to yield 10 candidates within a week, which, when validated by the client, achieved the desired target even better than their best-evolved candidate.”
Basecamp’s other huge potential is in bioremediation, where natural enzymes can help to undo the damage caused by toxic chemicals. “Biocatalysis impacts both sides,” says Gowers. “It reduces the usage of chemicals to make products, and at the same time, where contamination sites do exist from chemical spills, enzymes are also there to kind of mop those up.”
So far, Basecamp's round-the-world sampling has covered 50 percent of the 14 major biomes, or regions of the planet that can be distinguished by their flora, fauna, and climate, as defined by the World Wildlife Fund. The other half remains to be catalogued — a key milestone for understanding our planet’s protein diversity, Pushpanath notes.
There’s still a long road ahead to fully replace petrochemicals with natural enzymes, but biocatalysis is on an upward trajectory. "Eventually, this work will reduce chemical processes,” Bornscheuer says. “We’ll have cleaner processes, more sustainable processes.”
Small changes in how a person talks could reveal Alzheimer’s earlier
Dave Arnold retired in his 60s and began spending time volunteering in local schools. But then he started misplacing items, forgetting appointments and losing his sense of direction. Eventually he was diagnosed with early stage Alzheimer’s.
“Hearing the diagnosis made me very emotional and tearful,” he said. “I immediately thought of all my mom had experienced.” His mother suffered with the condition for years before passing away. Over the last year, Arnold has worked for the Alzheimer’s Association as one of its early stage advisors, sharing his insights to help others in the initial stages of the disease.
Arnold was diagnosed sooner than many others. It's important to find out early, when interventions can make the most difference. One promising avenue is looking at how people talk. Research has shown that Alzheimer’s affects a part of the brain that controls speech, resulting in small changes before people show other signs of the disease.
Now, Canary Speech, a company based in Utah, is using AI to examine elements like the pitch of a person’s voice and their pauses. In an initial study, Canary analyzed speech recordings with AI and identified early stage Alzheimer’s with 96 percent accuracy.
Developing the AI model
Canary Speech’s CEO, Henry O’Connell, met cofounder Jeff Adams about 40 years before they started the company. Back when they first crossed paths, they were both living in Bethesda, Maryland; O’Connell was a research fellow at the National Institutes of Health studying rare neurological diseases, while Adams was working to decode spy messages. Later on, Adams would specialize in building mathematical models to analyze speech and sound as a team leader in developing Amazon's Alexa.
It wasn't until 2015 that they decided to make use of the fit between their backgrounds. ““We established Canary Speech in 2017 to build a product that could be used in multiple languages in clinical environments,” O'Connell says.
The need is growing. About 55 million people worldwide currently live with Alzheimer’s, a number that is expected to double by 2050. Some scientists think the disease results from a buildup of plaque in the brain. It causes mild memory loss at first and, over time, this issue get worse while other symptoms, such as disorientation and hallucinations, can develop. Treatment to manage the disease is more effective in the earlier stages, but detection is difficult since mild symptoms are often attributed to the normal aging process.
O’Connell and Adams specialize in the complex ways that Alzheimer’s effects how people speak. Using AI, their mathematical model analyzes 15 million data points every minute, focusing on certain features of speech such as pitch, pauses and elongation of words. It also pays attention to how the vibrations of vocal cords change in different stages of the disease.
To create their model, the team used a type of machine learning called deep neural nets, which looks at multiple layers of data - in this case, the multiple features of a person’s speech patterns.
“Deep neural nets allow us to look at much, much larger data sets built out of millions of elements,” O’Connell explained. “Through machine learning and AI, we’ve identified features that are very sensitive to an Alzheimer’s patient versus [people without the disease] and also very sensitive to mild cognitive impairment, early stage and moderate Alzheimer's.” Based on their learnings, Canary is able to classify the disease stage very quickly, O’Connell said.
“When we’re listening to sublanguage elements, we’re really analyzing the direct result of changes in the brain in the physical body,” O’Connell said. “The brain controls your vocal cords: how fast they vibrate, the expansion of them, the contraction.” These factors, along with where people put their tongues when talking, function subconsciously and result in subtle changes in the sounds of speech.
Further testing is needed
In an initial trial, Canary analyzed speech recordings from phone calls to a large U.S. health insurer. They looked at the audio recordings of 651 policyholders who had early stage Alzheimer’s and 1018 who did not have the condition, aiming for a representative sample of age, gender and race. They used this data to create their first diagnostic model and found that it was 96 percent accurate in identifying Alzheimer’s.
Christian Herff, an assistant professor of neuroscience at Maastricht University in the Netherlands, praised this approach while adding that further testing is needed to assess its effectiveness.
“I think the general idea of identifying increased risk for cognitive impairment based on speech characteristics is very feasible, particularly when change in a user’s voice is monitored, for example, by recording speech every year,” Herff said. He noted that this can only be a first indication, not a full diagnosis. The accuracy still needs to be validated in studies that follows individuals over a period of time, he said.
Toby Walsh, a professor of artificial intelligence at the University of New South Wales, also thinks Canary’s tool has potential but highlights that Canary could diagnose some people who don’t really have the disease. “This is an interesting and promising application of AI,” he said, “but these tools need to be used carefully. Imagine the anxiety of being misdiagnosed with Alzheimer’s.”
As with many other AI tools, privacy and bias are additional issues to monitor closely, Walsh said.
Other languages
A related issue is that not everyone is fluent in English. Mahnaz Arvaneh, a senior lecturer in automatic control and systems engineering at the University of Sheffield, said this could be a blind spot.
“The system may not be very accurate for those who have English as their second language as their speaking patterns would be different, and any issue might be because of language deficiency rather than cognitive issues,” Arvaneh said.
The team is expanding to multiple languages starting with Japanese and Spanish. The elements of the model that make up the algorithm are very similar, but they need to be validated and retrained in a different language, which will require access to more data.
Recently, Canary analyzed the phone calls of 233 Japanese patients who had mild cognitive impairment and 704 healthy people. Using an English model they were able to identify the Japanese patients who had mild cognitive impairment with 78 percent accuracy. They also developed a model in Japanese that was 45 percent accurate, and they’re continuing to train it with more data.
The future
Canary is using their model to look at other diseases like Huntington’s and Parkinson’s. They’re also collaborating with pharmaceuticals to validate potential therapies for Alzheimer’s. By looking at speech patterns over time, Canary can get an indication of how well these drugs are working.
Dave Arnold and his wife dance at his nephew’s wedding in Rochester, New York, ten years ago, before his Alzheimer's diagnosis.
Dave Arnold
Ultimately, they want to integrate their tool into everyday life. “We want it to be used in a smartphone, or a teleconference call so that individuals could be examined in their home,” O’Connell said. “We could follow them over time and work with clinical teams and hospitals to improve the evaluation of patients and contribute towards an accurate diagnosis.”
Arnold, the patient with early stage Alzheimer’s, sees great promise. “The process of getting a diagnosis is already filled with so much anxiety,” he said. “Anything that can be done to make it easier and less stressful would be a good thing, as long as it’s proven accurate.”