Is Sex for Reproduction About to Become Extinct?
There are lots of great reasons we humans have sex. We mostly do it to pair bond, realize our primal urges, and feel good. Once in a while, we also do it to make babies. As the coming genetic revolution plays out, we'll still have sex for most of the same reasons we do today. But we'll increasingly not do it to procreate.
Protecting children from harm is one of the core responsibilities of parenting.
Most parents go to great lengths to protect their children from real and imagined harms. This begins with taking prenatal vitamins during pregnancy and extends to having children immunized and protected from exposures to various diseases and dangers. Most of us look askance for good reason at mothers who abuse controlled substances during their pregnancies or parents who choose to not immunize their children. Protecting children from harm is one of the core responsibilities of parenting.
In the United States today, up to two percent of babies are estimated to be born with rare genetic diseases caused by single gene mutations. Sickle cell disease, Tay-Sachs, and Huntington's disease are among the more well-known examples of these, but the list runs to the thousands. Many babies born with these disorders suffer terribly, some die young, and nearly all spend big chunks of their lives struggling through the medical system.
Increasingly, however, many of these single-gene mutation diseases and other chromosomal disorders like Down syndrome are being identified in non-invasive prenatal tests performed on expectant mothers at the end of their first trimester of pregnancy. Knowing the hardship that children born with these types of disorders will likely face, majorities of these women in countries around the world are choosing to terminate pregnancies once these diagnoses have been made. Whatever the justification and whatever anyone's views on the morality of abortion, these decisions are inherently excruciating.
A much smaller number of prospective mothers, however, are today getting this same information about their potential future children before their pregnancies even begin. By undergoing both in vitro fertilization (IVF) and preimplantation genetic testing (PGT), these women are able to know which of the eggs that have been surgically extracted from them and fertilized with their partner or donor's sperm will carry the dangerous mutations. The in vitro embryos with these disorders are simply not implanted in the expectant mother's womb.
It would be monstrous to assert that an existing person with a deadly disease has any less right to thrive than anyone else. But it would also be hard to make a case that parents should affirmatively choose to implant embryos carrying such a disease if given the option. If prospective parents are already today choosing not to implant certain embryos based on our preliminary understanding of disease risk, what will happen when this embryo selection is based on far more information than just a few thousand single gene mutation diseases?
Our ability and willingness to make genetic alterations to our future children will grow over time along with our knowledge and technological ability.
When the first human genome was sequenced in 2003, the race to uncover the mysteries of human genetics had only just begun. Although we still know very little about our genetics relative to the complexity of the genome and even less compared to the broader ecosystem of our biology, the progress toward greater understanding is astounding. Today, the number of single gene mutation diseases and relatively simple genetic traits that can be predicted meaningfully from genetic data alone is already significant.
In the not-distant future, this list will grow to include complex diseases and disease propensities, percentage probabilities of living a long and healthy life, and increasingly the genetic component of complex human attributes like height, IQ, and personality style. This predictive power of genetic analysis will funnel straight into our fertility clinics where prospective parents choosing embryos will be making ever more consequential decisions about the genetic components of the future lives, health, and capabilities of their children.
Our understanding of what the genes extracted from early stage pre-implanted embryos are telling us will be only one of the rocket boosters driving assisted reproduction forward. Another will be the ability to induce adult cells like skin and nucleated blood cells into stem cells and then turn those stem cells into egg progenitor cells and then ultimately eggs. This will not only eliminate the need for hormone treatments and surgery to extract human eggs but also make it easy and cheap to generate an unlimited number of eggs from a given woman.
The average woman has around fifteen eggs extracted during IVF but imagine what generating a thousand eggs will do to the range of possibilities that could be realized through pre-implantation embryo selection. Each of these thousand eggs would be the natural offspring of the two parents, but the variation between them would make it possible to choose the ones with the strongest expression of the genetic component of a particular desired trait – like those with the highest possible genetic IQ potential.
Another rocket booster will be the application of gene editing technologies like CRISPR to edit the genomes of pre-implanted embryos or of the sperm and eggs used to create them. Just this week, Chinese researchers announced they had used CRISPR to edit the CCR5 gene in the pre-implanted embryos of a pair of Chinese twins to make them immune to HIV, the first ever case of gene editing humans and a harbinger of our genetically engineered future. The astounding complexity of the human genome will put limits on our ability to safely make too many simultaneous genetic changes to human embryos, but our ability and willingness to make these types of alterations to our future children will grow over time along with our knowledge and technological ability.
With so much at stake, prospective parents will increasingly have a stark choice when determining how to conceive their children. If they go the traditional route of sex, they will experience both the benign wisdom and unfathomable cruelty of nature. If they use IVF and increasingly informed embryo selection, they will eliminate most single gene mutation diseases and likely increase their children's chances of living a longer and healthier life with more opportunity than their unenhanced peers. But the optimizing parents could also set up their children for misery if these children don't particularly enjoy what they have been optimized to become or see themselves as some type of freakish consumer product with emotions.
Conceiving though sex will come to be seen more and more like not immunizing your children is today, a perfectly natural choice that comes with a significant potential risk and expense.
But although there will be pros and cons on each side, the fight between conception through good old-fashioned sex and conception in the lab will ultimately not be fair. Differences and competition within and between societies will pressure parents and societies to adopt ever more aggressive forms of reproductive technology if they believe doing so will open possibilities and create opportunities for the next generations rather than close them.
Conception through sex will remain as useful as it has always been but lab conception will only get more advantageous. Over time, only zealots will choose to roll the dice of their future children's health and well-being rather than invest, like parents always have, in protecting their children from harm and helping optimize their life potential. Conceiving though sex will come to be seen more and more like not immunizing your children is today, a perfectly natural choice that comes with a significant potential risk and expense to yourself, your children, and your community.
As this future plays out, the genetics and assisted reproduction revolutions will raise enormous, thorny, and massively consequential questions about how we value and invest in diversity, equality, and our own essential humanity – questions we aren't remotely prepared to answer. But these revolutions are coming sooner than most of us understand or are prepared for so we had better get ready.
Because where this trail is ultimately heading goes well beyond sex and toward a fundamental transformation of our evolutionary process as a species – and that should be everybody's business.
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on scientific creativity and progress to give you a therapeutic dose of inspiration headed into the weekend.
Here are the promising studies covered in this week's Friday Five, featuring interviews with Dr. Christopher Martens, director of the Delaware Center for Cogntiive Aging Research and professor of kinesiology and applied physiology at the University of Delaware, and Dr. Ilona Matysiak, visiting scholar at Iowa State University and associate professor of sociology at Maria Grzegorzewska University.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
- Could this supplement help prevent Alzheimer's?
- Why you should care about smart senior towns
- Here's how to reverse being drunk
- Money can make you happy - if you're this type of person
- Personalized anxiety medicine
As a child, Wendy Borsari participated in a health study at Boston Children’s Hospital. She was involved because heart disease and sudden cardiac arrest ran in her family as far back as seven generations. When she was 18, however, the study’s doctors told her that she had a perfectly healthy heart and didn’t have to worry.
A couple of years after graduating from college, though, the Boston native began to experience episodes of near fainting. During any sort of strenuous exercise, my blood pressure would drop instead of increasing, she recalls.
She was diagnosed at 24 with hypertrophic cardiomyopathy. Although HCM is a commonly inherited heart disease, Borsari’s case resulted from a rare gene mutation, the MYH7 gene. Her mother had been diagnosed at 27, and Borsari had already lost her grandmother and two maternal uncles to the condition. After her own diagnosis, Borsari spent most of her free time researching the disease and “figuring out how to have this condition and still be the person I wanted to be,” she says.
Then, her son was found to have the genetic mutation at birth and diagnosed with HCM at 15. Her daughter, also diagnosed at birth, later suffered five cardiac arrests.
That changed Borsari’s perspective. She decided to become a patient advocate. “I didn’t want to just be a patient with the condition,” she says. “I wanted to be more involved with the science and the biopharmaceutical industry so I could be active in helping to make it better for other patients.”
She consulted on patient advocacy for a pharmaceutical and two foundations before coming to a company called Tenaya in 2021.
“One of our core values as a company is putting patients first,” says Tenaya's CEO, Faraz Ali. “We thought of no better way to put our money where our mouth is than by bringing in somebody who is affected and whose family is affected by a genetic form of cardiomyopathy to have them make sure we’re incorporating the voice of the patient.”
Biomedical corporations and government research agencies are now incorporating patient advocacy more than ever, says Alice Lara, president and CEO of the Sudden Arrhythmia Death Syndromes Foundation in Salt Lake City, Utah. These organizations have seen the effectiveness of including patient voices to communicate and exemplify the benefits that key academic research institutions have shown in their medical studies.
“From our side of the aisle,” Lara says, “what we know as patient advocacy organizations is that educated patients do a lot better. They have a better course in their therapy and their condition, and understanding the genetics is important because all of our conditions are genetic.”
Founded in 2016, Tenaya is advancing gene therapies and small molecule drugs in clinical trials for both prevalent and rare forms of heart disease, says Ali, the CEO.
The firm's first small molecule, now in a Phase 1 clinical trial, is intended to treat heart failure with preserved ejection fraction, where the amount of blood pumped by the heart is reduced due to the heart chambers becoming weak or stiff. The condition accounts for half or more of all heart failure in the U.S., according to Ali, and is growing quickly because it's closely associated with diabetes. It’s also linked with metabolic syndrome, or a cluster of conditions including high blood pressure, high blood sugar, excess body fat around the waist, and abnormal cholesterol levels.
“We have a novel molecule that is first in class and, to our knowledge, best in class to tackle that, so we’re very excited about the clinical trial,” Ali says.
The first phase of the trial is being performed with healthy participants, rather than people with the disease, to establish safety and tolerability. The researchers can also look for the drug in blood samples, which could tell them whether it's reaching its target. Ali estimates that, if the company can establish safety and that it engages the right parts of the body, it will likely begin dosing patients with the disease in 2024.
Tenaya’s therapy delivers a healthy copy of the gene so that it makes a copy of the protein missing from the patients' hearts because of their mutation. The study will start with adult patients, then pivot potentially to children and even newborns, Ali says, “where there is an even greater unmet need because the disease progresses so fast that they have no options.”
Although this work still has a long way to go, Ali is excited about the potential because the gene therapy achieved positive results in the preclinical mouse trial. This animal trial demonstrated that the treatment reduced enlarged hearts, reversed electrophysiological abnormalities, and improved the functioning of the heart by increasing the ejection fraction after the single-dose of gene therapy. That measurement remained stable to the end of the animals’ lives, roughly 18 months, Ali says.
He’s also energized by the fact that heart disease has “taken a page out of the oncology playbook” by leveraging genetic research to develop more precise and targeted drugs and gene therapies.
“Now we are talking about a potential cure of a disease for which there was no cure and using a very novel concept,” says Melind Desai of the Cleveland Clinic.
Tenaya’s second program focuses on developing a gene therapy to mitigate the leading cause of hypertrophic cardiomyopathy through a specific gene called MYPBC3. The disease affects approximately 600,000 patients in the U.S. This particular genetic form, Ali explains, affects about 115,000 in the U.S. alone, so it is considered a rare disease.
“There are infants who are dying within the first weeks to months of life as a result of this mutation,” he says. “There are also adults who start having symptoms in their 20s, 30s and 40s with early morbidity and mortality.” Tenaya plans to apply before the end of this year to get the FDA’s approval to administer an investigational drug for this disease humans. If approved, the company will begin to dose patients in 2023.
“We now understand the genetics of the heart much better,” he says. “We now understand the leading genetic causes of hypertrophic myopathy, dilated cardiomyopathy and others, so that gives us the ability to take these large populations and stratify them rationally into subpopulations.”
Melind Desai, MD, who directs Cleveland Clinic’s Hypertrophic Cardiomyopathy Center, says that the goal of Tenaya’s second clinical study is to help improve the basic cardiac structure in patients with hypertrophic cardiomyopathy related to the MYPBC3 mutation.
“Now we are talking about a potential cure of a disease for which there was no cure and using a very novel concept,” he says. “So this is an exciting new frontier of therapeutic investigation for MYPBC3 gene-positive patients with a chance for a cure.
Neither of Tenaya’s two therapies address the gene mutation that has affected Borsari and her family. But Ali sees opportunity down the road to develop a gene therapy for her particular gene mutation, since it is the second leading cause of cardiomyopathy. Treating the MYH7 gene is especially challenging because it requires gene editing or silencing, instead of just replacing the gene.
Wendy Borsari was diagnosed at age 24 with a commonly inherited heart disease. She joined Tenaya as a patient advocate in 2021.
Wendy Borsari
“If you add a healthy gene it will produce healthy copies,” Ali explains, “but it won’t stop the bad effects of the mutant protein the gene produces. You can only do that by silencing the gene or editing it out, which is a different, more complicated approach.”
Euan Ashley, professor of medicine and genetics at Stanford University and founding director of its Center for Inherited Cardiovascular Disease, is confident that we will see genetic therapies for heart disease within the next decade.
“We are at this really exciting moment in time where we have diseases that have been under-recognized and undervalued now being attacked by multiple companies with really modern tools,” says Ashley, author of The Genome Odyssey. “Gene therapies are unusual in the sense that they can reverse the cause of the disease, so we have the enticing possibility of actually reversing or maybe even curing these diseases.”
Although no one is doing extensive research into a gene therapy for her particular mutation yet, Borsari remains hopeful, knowing that companies such as Tenaya are moving in that direction.
“I know that’s now on the horizon,” she says. “It’s not just some pipe dream, but will happen hopefully in my lifetime or my kids’ lifetime to help them.”