Is There a Blind Spot in the Oversight of Human Subject Research?
Human experimentation has come a long way since congressional hearings in the 1970s exposed patterns of abuse. Where yesterday's patients were protected only by the good conscience of physician-researchers, today's patients are spirited past hazards through an elaborate system of oversight and informed consent. Yet in many ways, the project of grounding human research on ethical foundations remains incomplete.
As human research has become a mainstay of career and commercial advancement among academics, research centers, and industry, new threats to research integrity have emerged.
To be sure, much of the medical research we do meets exceedingly high standards. Progress in cancer immunotherapy, or infectious disease, reflects the best of what can be accomplished when medical scientists and patients collaborate productively. And abuses of the earlier part of the 20th century--like those perpetrated by the U.S. Public Health Service in Guatemala--are for the history books.
Yet as human research has become a mainstay of career and commercial advancement among academics, research centers, and industry, new threats to research integrity have emerged. Many flourish in the blind spot of current oversight systems.
Take, for example, the tendency to publish only "positive" findings ("publication bias"). When patients participate in studies, they are told that their contributions will promote medical discovery. That can't happen if results of experiments never get beyond the hard drives of researchers. While researchers are often eager to publish trials showing a drug works, according to a study my own team conducted, fewer than 4 in 10 trials of drugs that never receive FDA approval get published. This tendency- which occurs in academia as well as industry- deprives other scientists of opportunities to build on these failures and make good on the sacrifice of patients. It also means the trials may be inadvertently repeated by other researchers, subjecting more patients to risks.
On the other hand, many clinical trials test treatments that have already been proven effective beyond a shadow of doubt. Consider the drug aprotinin, used for the management of bleeding during surgery. An analysis in 2005 showed that, not long after the drug was proven effective, researchers launched dozens of additional placebo-controlled trials. These redundant trials are far in excess of what regulators required for drug approval, and deprived patients in placebo arms of a proven effective therapy. Whether because of an oversight or deliberately (does it matter?), researchers conducting these trials often failed in publications to describe previous evidence of efficacy. What's the point of running a trial if no one reads the results?
It is surprisingly easy for companies to hijack research to market their treatments.
At the other extreme are trials that are little more than shots in the dark. In one case, patients with spinal cord injury were enrolled in a safety trial testing a cell-based regenerative medicine treatment. After the trial stopped (results were negative), laboratory scientists revealed that the cells had been shown ineffective in animal experiments. Though this information had been available to the company and FDA, researchers pursued the trial anyway.
It is surprisingly easy for companies to hijack research to market their treatments. One way this happens is through "seeding trials"- studies that are designed not to address a research question, but instead to habituate doctors to using a new drug and to generate publications that serve as advertisements. Such trials flood the medical literature with findings that are unreliable because studies are small and not well designed. They also use the prestige of science to pursue goals that are purely commercial. Yet because they harm science- not patients (many such studies are minimally risky because all patients receive proven effective medications)- ethics committees rarely block them.
Closely related is the phenomenon of small uninformative trials. After drugs get approved by the FDA, companies often launch dozens of small trials in new diseases other than the one the drug was approved to treat. Because these studies are small, they often overestimate efficacy. Indeed, the way trials are often set up, if a company tests an ineffective drug in 40 different studies, one will typically produce a false positive by chance alone. Because companies are free to run as many trials as they like and to circulate "positive" results, they have incentives to run lots of small trials that don't provide a definitive test of their drug's efficacy.
Universities, funding bodies, and companies should be scored by a neutral third-party based on the impact of their trials -- like Moody's for credit ratings.
Don't think public agencies are much better. Funders like the National Institutes of Health secure their appropriations by gratifying Congress. This means that NIH gets more by spreading its funding among small studies in different Congressional districts than by concentrating budgets among a few research institutions pursuing large trials. The result is that some NIH-funded clinical trials are not especially equipped to inform medical practice.
It's tempting to think that FDA, medical journals, ethics committees, and funding agencies can fix these problems. However, these practices continue in part because FDA, ethics committees, and researchers often do not see what is at stake for patients by acquiescing to low scientific standards. This behavior dishonors the patients who volunteer for research, and also threatens the welfare of downstream patients, whose care will be determined by the output of research.
To fix this, deficiencies in study design and reporting need to be rendered visible. Universities, funding bodies, and companies should be scored by a neutral third-party based on the impact of their trials, or the extent to which their trials are published in full -- like Moody's for credit ratings, or the Kelley Blue Book for cars. This system of accountability would allow everyone to see which institutions make the most of the contributions of research subjects. It could also harness the competitive instincts of institutions to improve research quality.
Another step would be for researchers to level with patients when they enroll in studies. Patients who agree to research are usually offered bromides about how their participation may help future patients. However, not all studies are created equal with respect to merit. Patients have a right to know when they are entering studies that are unlikely to have a meaningful impact on medicine.
Ethics committees and drug regulators have done a good job protecting research volunteers from unchecked scientific ambition. However, today's research is plagued by studies that have poor scientific credentials. Such studies free-ride on the well-earned reputation of serious medical science. They also potentially distort the evidence available to physicians and healthcare systems. Regulators, academic medical centers, and others should establish policies that better protect human research volunteers by protecting the quality of the research itself.
Scientists use AI to predict how hospital stays will go
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on scientific creativity and progress to give you a therapeutic dose of inspiration headed into the weekend.
Here are the promising studies covered in this week's Friday Five:
- The problem with bedtime munching
- Scientists use AI to predict how stays in hospitals will go
- How to armor the shields of our livers against cancer
- One big step to save the world: turn one kind of plastic into another
- The perfect recipe for tiny brains
And an honorable mention this week: Bigger is better when it comes to super neurons in super agers
The Toxic Effects of Noise and What We’re Not Doing About It
Erica Walker had a studio in her Brookline, Mass. apartment where she worked as a bookbinder and furniture maker. That was until a family with two rowdy children moved in above her.
The kids ran amuck, disrupting her sleep and work. Ear plugs weren’t enough to blot out the commotion. Aside from anger and a sense of lost control, the noise increased her heart rate and made her stomach feel like it was dropping, she says.
That’s when Walker realized that noise is a public health problem, not merely an annoyance. She set up her own “mini study” on how the clamor was affecting her. She monitored sound levels in her apartment and sent saliva samples to a lab to measure her stress levels.
Walker ultimately sold her craft equipment and returned to school to study public health. Today she is assistant professor of epidemiology and director of the Community Noise Lab at the Brown University School of Public Health. “We treat noise like a first world problem—like a sacrifice we should have to make for modern conveniences. But it’s a serious environmental stressor,” she asserts.
Our daily soundscape is a cacophony of earsplitting jets, motorcycles, crying babies, construction sites or gunshots if you’re in the military. Noise exposure is the primary cause of preventable hearing loss. Researchers have identified links between excessive noise and a heightened risk of heart disease, metabolic disorders, anxiety, depression, sleep disorders, and impaired cognition. Even wildlife suffers. Blasting oil drills and loud shipping vessels impede the breeding, feeding and migration of whales and dolphins.
At one time, the federal government had our back… and our ears. Congress passed the Noise Control Act in 1972. The Environmental Protection Agency set up the Office of Noise Abatement and Control (ONAC) to launch research, explore solutions and establish noise emission standards. But ONAC was defunded in 1981 amidst a swirl of antiregulatory sentiment.
Impossibly Loud and Unhealthy
Daniel Fink. a physician, WHO consultant, and board chair of The Quiet Coalition, a program of the nonprofit Quiet Communities, likens the effect of noise to the invisible but cumulative harm of second-hand smoke. About 1 in 4 adults in the U.S. who report excellent to good hearing already have some hearing loss. The injury can happen after one loud concert or from years with a blaring TV. Some people are more genetically susceptible to noise-related hearing loss than others.
“People say noise isn’t a big deal but it bothers your body whether you realize it or not,” says Ted Rueter, director of Noise Free America: A Coalition to Promote Quiet. Noise can chip away at your ears or cardiovascular system even while you’re sleeping. Rueter became a “quiet advocate” while a professor at UCLA two decades ago. He was plagued by headaches, fatigue and sleep deprivation caused by the hubbub of Los Angeles, he says.
The louder a sound is, and the longer you are exposed to it, the more likely it will cause nerve damage and harmful fluid buildup in your inner ear. Normal speech is 50-60 decibels (dBs). The EPA recommends that 24-hour exposure to noise should be no higher than 70 weighted decibels over 24 hours (weighted to approximate how the human ear perceives the sound) to prevent hearing loss but a 55 dB limit is recommended to protect against other harms from noise, too.
The decibel scale is logarithmic. That means 80 dB is 10 times louder than 70 dB. Trucks and motorcycles run 90 dBs. A gas-powered leaf blower, jackhammer or snow blower will cost you 100 dBs. A rock concert is in the 110 dB range. Aircraft takeoffs or sirens? 120 dBs.
Walker, the Brown professor, says that sound measurements often use misleading metrics, though, because they don’t include low frequency sound that disturb the body. The high frequency of a screeching bus will register in decibels but the sound that makes your chest reverberate is not accounted for, she explains. ‘How loud?’ is a superficial take when it comes to noise, Walker says.
After realizing the impact of noise on her own health, Erica Walker was inspired to change careers and become director of the Community Noise Lab at the Brown University School of Public Health.
Erica Walker
Fink adds that the extent to which noise impairs hearing is underestimated. People assume hearing loss is due to age but it’s not inevitable, he says. He cites studies of older people living in quiet, isolated areas who maintain excellent hearing. Just like you can prevent wrinkles by using sunscreen, you can preserve hearing by using ear plugs when attending fireworks or hockey games.
You can enable push notifications on a Smart Watch to alert you at a bar exceeding healthy sound levels. Free apps like SoundPrint, iHEARu, or NoiseTube can do decibel checks, too, but you don’t need one, says Fink. “If you can’t carry a conversation at normal volume, it’s too loud and your auditory health is at risk,” he says.
About 40 million U.S. adults, ages 20-69, have noise-induced hearing loss. Fink is among them after experiencing tinnitus (ringing or buzzing in the ears) on leaving a raucous New Year’s Eve party in 2007. The condition is permanent and he wears earplugs now for protection.
Fewer are aware of the link between noise pollution and heart disease. Piercing noise is stressful, raising blood pressure and heart rate. If you live near a freeway or constantly barking dog, the chronic sound stress can trigger systemic inflammation and the vascular changes associated with heart attacks and stroke.
Researchers at Rutgers University’s Robert Wood Johnson Medical School, working with data from the state’s Bureau of Transportation, determined that 1 in 20 heart attacks in New Jersey during 2018 were due to noise from highways, trains and air traffic. That’s 800 heart attack hospitalizations in the state that year.
Another study showed that incidence of hypertension and hardening arteries decreased during the Covid-19 air lockdown among Poles in Krakow routinely exposed to aircraft noise. The authors, comparing their pre-pandemic 2015 results to 2020 data, concluded it was no coincidence.
Mental health takes a hit, too. Chronic noise can provoke anxiety, depression and violence. Cognitively, there is ample evidence that noise disturbance lowers student achievement and worker productivity, and hearing loss among older people can speed up cognitive decline.
Noise also contributes to health disparities. People in neighborhoods with low socioeconomic status and a higher percentage of minority residents bear the brunt of noise. Affluent people have the means to live far from airports, factories, and honking traffic.
Out, Out, Damn Noise
Europe is ahead of the U.S. in tackling noise pollution. The World Health Organization developed policy guidelines used by the European Environment Agency to establish noise regulations and standards, and progress reports are issued.
Americans are relying too much on personal protective equipment (PPE) instead of eliminating or controlling noise. The Centers of Disease Control and Prevention rank PPE as the least useful response. Earplugs and muffs are effective, says Walker, but these devices are “a band-aid on a waterfall.”
Editing out noise during product design is the goal. Engineers have an arsenal of techniques and know-how for that. The problem is that these solutions aren’t being applied.
A better way to lower the volume is by maintaining or substituting equipment intended for common use. Piercing building alarms can be replaced with visual signals that flash alerts. Clanking chain and gear drives can be swapped out with belt drives. Acoustical barriers can wall off highway noise. Hospitals can soften beeping monitors and limit loudspeaker blasts. Double paned windows preserve quiet.
Editing out noise during product design is the goal. Engineers have an arsenal of techniques and know-how for that. The problem is that these solutions aren’t being applied, says Jim Thompson, an engineer and editor of the Noise Control Engineering Journal, published by the Institute of Noise Control Engineering of the USA
Engineers have materials to insulate, absorb, reflect, block, seal or diffuse noise. Building walls can be padded. Metal gears and parts can be replaced with plastic. Clattering equipment wheels can be rubberized. In recent years, building certifications such as LEED have put more emphasis on designs that minimize harmful noise.
Walker faults urban planners, too. A city’s narrow streets and taller buildings create a canyon effect which intensifies noise. City planners could use bypasses, rerouting, and other infrastructure strategies to pump down traffic volume. Sound-absorbing asphalt pavement exists, too.
Some municipalities are taking innovative measures on their own. Noise cameras have been installed in Knoxville, Miami and New York City this year and six California cities will join suit next year. If your muffler or audio system registers 86 dB or higher, you may receive a warning, fine or citation, similar to how a red-light camera works. Rueter predicts these cameras will become commonplace.
Based on understanding how metabolic processes affect noise-induced hearing loss in animal models, scientists are exploring whether pharmacological interventions might work to inhibit cellular damage or improve cellular defenses against noise.
Washington, DC, and the University of Southern California have banned gas-powered leaf blowers in lieu of quieter battery-powered models to reduce both noise and air pollution. California will be the first state to ban the sale of gas-powered lawn equipment starting 2024.
New York state legislators enacted the SLEEP (Stop Loud and Excessive Exhaust Pollution) Act in 2021. This measure increases enforcement and fines against motorists and repair shops that illegally modify mufflers and exhaust systems for effect.
“A lot more basic science and application research is needed [to control noise],” says Thompson, noting that funding for this largely dried up after the 1970s. Based on understanding how metabolic processes affect noise-induced hearing loss in animal models, scientists are exploring whether pharmacological interventions might work to inhibit cellular damage or improve cellular defenses against noise.
Studying biochemical or known genetic markers for noise risk could lead to other methods for preventing hearing loss. This would offer an opportunity to identify people with significant risk so those more susceptible to hearing loss could start taking precautions to avoid noise or protect their ears in childhood.
These efforts could become more pressing in the near future, with the anticipated onslaught of drones, rising needs for air conditioners, and urban sprawl boding poorly for the soundscape. This, as deforestation destroys natural carbon absorption reservoirs and removes sound-buffering trees.
“Local and state governments don’t have a plan to deal with [noise] now or in the future,” says Walker. “We need to think about this with intentionality.”