Just Say No to Editing Human Embryos for Reproduction
BIG QUESTION OF THE MONTH: Should we use CRISPR, the new technique that enables precise DNA editing, to change the genes of human embryos to eradicate disease – or even to enhance desirable traits? LeapsMag invited three leading experts to weigh in.
Over the last few decades, the international community has issued several bioethical guidelines and legally binding documents, ranging from UN Declarations to regional charters to national legislation, about editing the human germline--the DNA that is passed down to future generations. There was a broad consensus that modifications should be prohibited. But now that CRISPR-cas9 and related methods of gene editing are taking the world by storm, that stance is softening--and so far, no thorough public discussion has emerged.
There is broad agreement in the scientific and ethics community that germline gene editing must not be clinically applied unless safety concerns are resolved. Predicting that safety issues will indeed be minimized, the National Academy of Sciences issued a report this past February that sets up several procedural norms. These may serve as guidelines for future implementation of human embryo editing, among them that there are no "reasonable alternatives," a condition that is left deliberately vague.
I regard the conditional embrace of germline gene editing as a grave mistake: It is a dramatic break with the previous idea of a ban, departing also from the moratorium that the UNESCO International Bioethics Committee had recommended in 2015. But in a startling move, the Academy already set the next post, recommending "that genome editing for purposes other than treatment or prevention of disease and disability should not proceed at this time" (my emphasis). It recommended public discussions, but without spelling out its own role in facilitating them.
"The international community should explicitly ban embryo gene editing as a method of human reproduction."
To proceed ethically, I argue that the international community, through the United Nations and in line with the ban on human reproductive cloning, should explicitly ban embryo gene editing as a method of human reproduction. Together with guidelines adjusted for non-reproductive and non-human applications, a prohibition would ensure two important results: First, that non-reproductive human embryo research could be pursued in a responsible way in those countries that allow for it, and second, that individual scientists, public research institutes, and private companies would know the moral limit of possible research.
Basic human embryo research is required, scientists argue, to better understand genetic diseases and early human development. I do not question this, and I am convinced that existing guidelines can be adjusted to meet the moral requirements in this area. Millions of people may benefit from different non-reproductive pathways of gene editing. Germline gene editing, in contrast, does not offer any resolutions to global or local health problems – and that alone raises many concerns about the current state of scientific research.
I support a ban because germline gene editing for reproductive purposes concerns more than safety. The genetic modification of a human being is irreversible and unpredictable in its epigenetic, personal, and social effects. It concerns the rights of children; it exposes persons with disabilities to social stigmatization; it contradicts the global justice agenda with respect to healthcare; and it infringes upon the rights to freedom and well-being of future persons.
"Reproductive germline gene editing directly violates the rights of individual future person."
Apart from questions of justice, reproductive germline gene editing may well increase the stigmatization of persons with disabilities. I want to emphasize here, however, that it directly violates the rights of individual future persons, namely a future child's right to genetic integrity, to freedom, and potentially to well-being, all guaranteed in different UN Declarations of Human Rights. For all these reasons, it is an unacceptable path forward.
The way the discussion has been framed so far is very different from my perspective that situates germline gene editing in the broader framework of human rights and responsibilities. In short, many others never questioned the goal but instead focused on the unintentional side-effects of an otherwise beneficial technique for human reproduction. Some scientists see germline gene editing as an alternative to embryo selection via Preimplantation Genetic Diagnosis (PGD), a procedure in which multiple embryos are tested to find out which ones carry disease-causing mutations. Others see it as the first step to human enhancement.
Some physicians argue that in the field of assisted reproduction, not every couple is comfortable with embryo selection via PGD, because potentially, unchosen embryos are discarded. Germline gene editing offers them an alternative. It is rarely mentioned, however, that germline gene editing would most likely still require PGD as a control of the procedure (though without the purpose of selection), and that prenatal genetic diagnosis would also be highly recommended. In other words, germline gene editing would not replace existing protocols but rather change their purpose, and it would also not necessarily reduce the number of embryos needed for assisted reproduction.
In some (rare) cases, PGD is not an option, because in the couples' condition, all embryos will be affected. One current option to avoid transmitting genetic traits is to use a donor sperm or egg, though the resulting child would not be genetically related to one parent. If these parents had an obligation, as some proponents argue, to secure the health of their offspring (an argument that I do not follow), then procreation with sperm or egg donation would even be morally required, as this is the safest procedure to erase a given genetic trait.
There are no therapeutic scenarios that exclusively require reproductive gene editing even if one accepts the right to reproductive autonomy. The fact is that couples who rightly wish to secure and protect the health of their future children can be offered medical alternatives in all cases. However, this requires considering sperm or egg donation as the safest and most reasonable option – the condition the NAS Report has set.
Scientists in favor of germline gene editing argue against this: the desire for genetic kinship, they say, is a legitimate expression of a couple's reproductive freedom, and germline gene editing offers them an alternative to have a healthy child. In the future, proponents say, these (very few) couples who wish for genetically related offspring will be faced with the dilemma of either accepting the transmission of a genetic health risk to their children or weighing the benefits and risks of gene editing.
But here is a blind spot in the whole discussion.
Many scientists and some bioethicists think that reproductive freedom includes the right to a genetically related child. But even if we were to presuppose such a right, it is not absolute in the context of assisted reproduction. Although sperm or egg donation may be undesirable for some couples, the moral question of responsibility does not disappear with their reproductive rights. At a minimum, the future child's rights must be considered, and these rights go further than their health rights.
It is puzzling that in claiming their own reproductive freedom, couples would need to ignore their children's and possibly grandchildren's future freedom – including the constraints resulting from being monitored over the course of their lives and the indirect constraints of the children's own right to reproductive freedom. From a medical standpoint, it would be highly recommended for them, too, to have children through assisted reproduction. This distinguishes germline gene editing from any other procedure of assisted reproduction: we need the data from the second and third generations to see whether the method is safe and efficacious. Whose reproductive freedom should count, the parents' or the future children's?
But for now, the question of parental rights may well divert the discussion from the question of responsible gene editing research; its conditions and structures require urgent evaluation and adjustment to guide international research groups. I am concerned that we are in the process of developing a new technology that has tremendous potential and ramifications – but without having considered the ethical framework for a responsible path forward.
Editor's Note: Check out the viewpoints expressing enthusiastic support and mild curiosity.
Last week, researchers at the University of Oxford announced that they have received funding to create a brand new way of preventing ovarian cancer: A vaccine. The vaccine, known as OvarianVax, will teach the immune system to recognize and destroy mutated cells—one of the earliest indicators of ovarian cancer.
Understanding Ovarian Cancer
Despite advancements in medical research and treatment protocols over the last few decades, ovarian cancer still poses a significant threat to women’s health. In the United States alone, more than 12,0000 women die of ovarian cancer each year, and only about half of women diagnosed with ovarian cancer survive five or more years past diagnosis. Unlike cervical cancer, there is no routine screening for ovarian cancer, so it often goes undetected until it has reached advanced stages. Additionally, the primary symptoms of ovarian cancer—frequent urination, bloating, loss of appetite, and abdominal pain—can often be mistaken for other non-cancerous conditions, delaying treatment.
An American woman has roughly a one percent chance of developing ovarian cancer throughout her lifetime. However, these odds increase significantly if she has inherited mutations in the BRCA1 or BRCA2 genes. Women who carry these mutations face a 46% lifetime risk for ovarian and breast cancers.
An Unlikely Solution
To address this escalating health concern, the organization Cancer Research UK has invested £600,000 over the next three years in research aimed at creating a vaccine, which would destroy cancerous cells before they have a chance to develop any further.
Researchers at the University of Oxford are at the forefront of this initiative. With funding from Cancer Research UK, scientists will use tissue samples from the ovaries and fallopian tubes of patients currently battling ovarian cancer. Using these samples, University of Oxford scientists will create a vaccine to recognize certain proteins on the surface of ovarian cancer cells known as tumor-associated antigens. The vaccine will then train that person’s immune system to recognize the cancer markers and destroy them.
The next step
Once developed, the vaccine will first be tested in patients with the disease, to see if their ovarian tumors will shrink or disappear. Then, the vaccine will be tested in women with the BRCA1 or BRCA2 mutations as well as women in the general population without genetic mutations, to see whether the vaccine can prevent the cancer altogether.
While the vaccine still has “a long way to go,” according to Professor Ahmed Ahmed, Director of Oxford University’s ovarian cancer cell laboratory, he is “optimistic” about the results.
“We need better strategies to prevent ovarian cancer,” said Ahmed in a press release from the University of Oxford. “Currently, women with BRCA1/2 mutations are offered surgery which prevents cancer but robs them of the chance to have children afterward.
Teaching the immune system to recognize the very early signs of cancer is a tough challenge. But we now have highly sophisticated tools which give us real insights into how the immune system recognizes ovarian cancer. OvarianVax could offer the solution.”
How sharing, hearing, and remembering positive stories can help shape our brains for the better
Across cultures and through millennia, human beings have always told stories. Whether it’s a group of boy scouts around a campfire sharing ghost stories or the paleolithic Cro-Magnons etching pictures of bison on cave walls, researchers believe that storytelling has been universal to human beings since the development of language.
But storytelling was more than just a way for our ancestors to pass the time. Researchers believe that storytelling served an important evolutionary purpose, helping humans learn empathy, share important information (such as where predators were or what berries were safe to eat), as well as strengthen social bonds. Quite literally, storytelling has made it possible for the human race to survive.
Today, neuroscientists are discovering that storytelling is just as important now as it was millions of years ago. Particularly in sharing positive stories, humans can more easily form relational bonds, develop a more flexible perspective, and actually grow new brain circuitry that helps us survive. Here’s how.
How sharing stories positively impacts the brain
When human beings share stories, it increases the levels of certain neurochemicals in the brain, neuroscientists have found. In a 2021 study published in Proceedings of the National Academy of Sciences (PNAS), Swedish researchers found that simply hearing a story could make hospitalized children feel better, compared to other hospitalized children who played a riddle game for the same amount of time. In their research, children in the intensive care unit who heard stories for just 30 minutes had higher levels of oxytocin, a hormone that promotes positive feelings and is linked to relaxation, trust, social connectedness, and overall psychological stability. Furthermore, the same children showed lower levels of cortisol, a hormone associated with stress. Afterward, the group of children who heard stories tended to describe their hospital experiences more positively, and even reported lower levels of pain.
Annie Brewster, MD, knows the positive effect of storytelling from personal experience. An assistant professor at Harvard Medical School and the author of The Healing Power of Storytelling: Using Personal Narrative to Navigate Illness, Trauma, and Loss, Brewster started sharing her personal experience with chronic illness after being diagnosed with multiple sclerosis in 2001. In doing so, Brewster says it has enabled her to accept her diagnosis and integrate it into her identity. Brewster believes so much in the power of hearing and sharing stories that in 2013 she founded Health Story Collaborative, a forum for others to share their mental and physical health challenges.“I wanted to hear stories of people who had found ways to move forward in positive ways, in spite of health challenges,” Brewster said. In doing so, Brewster believes people with chronic conditions can “move closer to self-acceptance and self-love.”
While hearing and sharing positive stories has been shown to increase oxytocin and other “feel good” chemicals, simply remembering a positive story has an effect on our brains as well. Mark Hoelterhoff, PhD, a lecturer in clinical psychology at the University of Edinburgh, recalling and “savoring” a positive story, thought, or feedback “begins to create new brain circuitry—a new neural network that’s geared toward looking for the positive,” he says. Over time, other research shows, savoring positive stories or thoughts can literally change the shape of your brain, hard-wiring someone to see things in a more positive light.How stories can change your behavior
In 2009, Paul Zak, PhD, a neuroscientist and professor at Claremont Graduate University, set out to measure how storytelling can actually change human behavior for the better. In his study, Zak wanted to measure the behavioral effects of oxytocin, and did this by showing test subjects two short video clips designed to elicit an emotional response.
In the first video they showed the study participants, a father spoke to the camera about his two-year-old son, Ben, who had been diagnosed with terminal brain cancer. The father told the audience that he struggled to connect with and enjoy Ben, as Ben had only a few months left to live. In the end, the father finds the strength to stay emotionally connected to his son until he dies.
The second video clip, however, was much less emotional. In that clip, the same father and son are shown spending the day at the zoo. Ben is only suggested to have cancer (he is bald from chemotherapy and referred to as a ‘miracle’, but the cancer isn’t mentioned directly). The second story lacked the dramatic narrative arc of the first video.
Zak’s team took blood before and after the participants watched one of the two videos and found that the first story increased the viewers’ cortisol and oxytocin, suggesting that they felt distress over the boy’s diagnosis and empathy toward the boy and his father. The second narrative, however, didn’t increase oxytocin or cortisol at all.
But Zak took the experiment a step further. After the movie clips, his team gave the study participants a chance to share money with a stranger in the lab. The participants who had an increase in cortisol and oxytocin were more likely to donate money generously. The participants who had increased cortisol and oxytocin were also more likely to donate money to a charity that works with children who are ill. Zak also found that the amount of oxytocin that was released was correlated with how much money people felt comfortable giving—in other words, the more oxytocin that was released, the more generous they felt, and the more money they donated.
How storytelling strengthens our bond with others
Sharing, hearing, and remembering stories can be a powerful tool for social change–not only in the way it changes our brain and our behavior, but also because it can positively affect our relationships with other people
Emotional stimulation from telling stories, writes Zak, is the foundation for empathy, and empathy strengthens our relationships with other people. “By knowing someone’s story—where they come from, what they do, and who you might know in common—relationships with strangers are formed.”
But why are these relationships important for humanity? Because human beings can use storytelling to build empathy and form relationships, it enables them to “engage in the kinds of large-scale cooperation that builds massive bridges and sends humans into space,” says Zak.
Storytelling, Zak found, and the oxytocin release that follows, also makes people more sensitive to social cues. This sensitivity not only motivates us to form relationships, but also to engage with other people and offer help, particularly if the other person seems to need help.
But as Zak found in his experiments, the type of storytelling matters when it comes to affecting relationships. Where Zak found that storytelling with a dramatic arc helps release oxytocin and cortisol, enabling people to feel more empathic and generous, other researchers have found that sharing happy stories allows for greater closeness between individuals and speakers. A group of Chinese researchers found that, compared to emotionally-neutral stories, happy stories were more “emotionally contagious.” Test subjects who heard happy stories had greater activation in certain areas of their brains, experienced more significant, positive changes in their mood, and felt a greater sense of closeness between themselves and the speaker.
“This finding suggests that when individuals are happy, they become less self-focused and then feel more intimate with others,” the authors of the study wrote. “Therefore, sharing happiness could strengthen interpersonal bonding.” The researchers went on to say that this could lead to developing better social networks, receiving more social support, and leading more successful social lives.
Since the start of the COVID pandemic, social isolation, loneliness, and resulting mental health issues have only gotten worse. In light of this, it’s safe to say that hearing, sharing, and remembering stories isn’t just something we can do for entertainment. Storytelling has always been central to the human experience, and now more than ever it’s become something crucial for our survival.
Want to know how you can reap the benefits of hearing happy stories? Keep an eye out for Upworthy’s first book, GOOD PEOPLE: Stories from the Best of Humanity, published by National Geographic/Disney, available on September 3, 2024. GOOD PEOPLE is a much-needed trove of life-affirming stories told straight from the heart. Handpicked from Upworthy’s community, these 101 stories speak to the breadth, depth, and beauty of the human experience, reminding us we have a lot more in common than we realize.