Lab-Grown Mini Kidneys Are Bringing Science Closer to Custom Organs

Lab-Grown Mini Kidneys Are Bringing Science Closer to Custom Organs

A model of a human kidney.

(Photo by Robina Weermeijer on Unsplash)



Science's dream of creating perfect custom organs on demand as soon as a patient needs one is still a long way off. But tiny versions are already serving as useful research tools and stepping stones toward full-fledged replacements.

Although organoids cannot yet replace kidneys, they are invaluable tools for research.

The Lowdown

Australian researchers have grown hundreds of mini human kidneys in the past few years. Known as organoids, they function much like their full-grown counterparts, minus a few features due to a lack of blood supply.

Cultivated in a petri dish, these kidneys are still a shadow of their human counterparts. They grow no larger than one-sixth of an inch in diameter; fully developed organs are up to five inches in length. They contain no more than a few dozen nephrons, the kidney's individual blood-filtering unit, whereas a fully-grown kidney has about 1 million nephrons. And the dish variety live for just a few weeks.

An organoid kidney created by the Murdoch Children's Institute in Melbourne, Australia.

Photo Credit: Shahnaz Khan.

But Melissa Little, head of the kidney research laboratory at the Murdoch Children's Institute in Melbourne, says these organoids are invaluable tools for research. Although renal failure is rare in children, more than half of those who suffer from such a disorder inherited it.

The mini kidneys enable scientists to better understand the progression of such disorders because they can be grown with a patient's specific genetic condition.

Mature stem cells can be extracted from a patient's blood sample and then reprogrammed to become like embryonic cells, able to turn into any type of cell in the body. It's akin to walking back the clock so that the cells regain unlimited potential for development. (The Japanese scientist who pioneered this technique was awarded the Nobel Prize in 2012.) These "induced pluripotent stem cells" can then be chemically coaxed to grow into mini kidneys that have the patient's genetic disorder.

"The (genetic) defects are quite clear in the organoids, and they can be monitored in the dish," Little says. To date, her research team has created organoids from 20 different stem cell lines.

Medication regimens can also be tested on the organoids, allowing specific tailoring for each patient. For now, such testing remains restricted to mice, but Little says it eventually will be done on human organoids so that the results can more accurately reflect how a given patient will respond to particular drugs.

Next Steps

Although these organoids cannot yet replace kidneys, Little says they may plug a huge gap in renal care by assisting in developing new treatments for chronic conditions. Currently, most patients with a serious kidney disorder see their options narrow to dialysis or organ transplantation. The former not only requires multiple sessions a week, but takes a huge toll on patient health.

Ten percent of older patients on dialysis die every year in the U.S. Aside from the physical trauma of organ transplantation, finding a suitable donor outside of a family member can be difficult.

"This is just another great example of the potential of pluripotent stem cells."

Meanwhile, the ongoing creation of organoids is supplying Little and her colleagues with enough information to create larger and more functional organs in the future. According to Little, researchers in the Netherlands, for example, have found that implanting organoids in mice leads to the creation of vascular growth, a potential pathway toward creating bigger and better kidneys.

And while Little acknowledges that creating a fully-formed custom organ is the ultimate goal, the mini organs are an important bridge step.

"This is just another great example of the potential of pluripotent stem cells, and I am just passionate to see it do some good."

Ron Shinkman
Ron Shinkman is a veteran journalist whose work has appeared in the New England Journal of Medicine publication Catalyst, California Health Report, Fierce Healthcare, and many other publications. He has been a finalist for the prestigious NIHCM Foundation print journalism award twice in the past five years. Shinkman also served as Los Angeles Bureau Chief for Modern Healthcare and as a staff reporter for the Los Angeles Business Journal. He has an M.A. in English from California State University and a B.A. in English from UCLA.
Therapies for Healthy Aging with Dr. Alexandra Bause
Sabine van Erp / Pixabay

My guest today is Dr. Alexandra Bause, a biologist who has dedicated her career to advancing health, medicine and healthier human lifespans. Dr. Bause co-founded a company called Apollo Health Ventures in 2017. She is currently a venture partner at Apollo and immersed in the exciting work going on in Apollo’s Venture Lab.

The company is focused on assembling a team of investors to realize important scientific breakthroughs in the life sciences. Dr. Bause and Apollo Health Ventures say that biotech is at “an inflection point” and is set to become a major driver of change and economic value.


Keep ReadingKeep Reading
Matt Fuchs
Matt Fuchs is the host of the Making Sense of Science podcast and served previously as the editor-in-chief of Leaps.org. He writes as a contributor to the Washington Post, and his articles have also appeared in the New York Times, WIRED, Nautilus Magazine, Fortune Magazine and TIME Magazine. Follow him @fuchswriter.
This man spent over 70 years in an iron lung. What he was able to accomplish is amazing.

Paul Alexander spent more than 70 years confined to an iron lung after a polio infection left him paralyzed at age 6. Here, Alexander uses a mirror attached to the top of his iron lung to view his surroundings.

Allison Smith / The Guardian

It’s a sight we don’t normally see these days: A man lying prone in a big, metal tube with his head sticking out of one end. But it wasn’t so long ago that this sight was unfortunately much more common.

In the first half of the 20th century, tens of thousands of people each year were infected by polio—a highly contagious virus that attacks nerves in the spinal cord and brainstem. Many people survived polio, but a small percentage of people who did were left permanently paralyzed from the virus, requiring support to help them breathe. This support, known as an “iron lung,” manually pulled oxygen in and out of a person’s lungs by changing the pressure inside the machine.

Keep ReadingKeep Reading
Sarah Watts

Sarah Watts is a health and science writer based in Chicago.