Masks and Distancing Won't Be Enough to Prevent School Outbreaks, Latest Science Suggests
Never has the prospect of "back to school" seemed so ominous as it does in 2020. As the number of COVID-19 cases climb steadily in nearly every state, the prospect of in-person classes are filling students, parents, and faculty alike with a corresponding sense of dread.
The notion that children are immune or resistant to SARS-CoV-2 is demonstrably untrue.
The decision to resume classes at primary, secondary, and collegiate levels is not one that should be regarded lightly, particularly as coronavirus cases skyrocket across the United States.
What should be a measured, data-driven discussion that weighs risks and benefits has been derailed by political talking points. President Trump has been steadily advocating for an unfettered return to the classroom, often through imperative "OPEN THE SCHOOLS!!!" tweets. In July, Secretary of Education Betsy DeVos threatened to withhold funding from schools that did not reopen for full-time, in-person classes, despite not having the authority to do so. Like so many public health issues, opening schools in the midst of a generational pandemic has been politicized to the point that the question of whether it is safe to do so has been obscured and confounded. However, this question still deserves to be examined based on evidence.
What We Know About Kids and COVID-19
Some arguments for returning to in-person education have focused on the fact that children and young adults are less susceptible to severe disease. In some cases, people have stated that children cannot be infected, pointing to countries that have resumed in-person education with no associated outbreaks. However, those countries had extremely low community transmission and robust testing and surveillance.
The notion that children are immune or resistant to SARS-CoV-2 is demonstrably untrue: children can be infected, they can become sick, and, in rare cases, they can die. Children can also transmit the virus to others, especially if they are in prolonged proximity to them. A Georgia sleepaway camp was the site of at least 260 cases among mostly children and teenagers, some as young as 6 years old. Children have been shown to shed infectious virus in their nasal secretions and have viral loads comparable to adults. Children can unquestionably be infected with SARS-CoV-2 and spread it to others.
The more data emerges, the more it appears that both primary and secondary schools and universities alike are conducive environments for super-spreading. Mitigating these risks depends heavily on individual schools' ability to enforce reduction measures. So far, the evidence demonstrates that in most cases, schools are unable to adequately protect students or staff. A school superintendent from a small district in Arizona recently described an outbreak that occurred among staff prior to in-person classes resuming. Schools that have opened so far have almost immediately reported new clusters of cases among students or staff.
This is because it is impossible to completely eliminate risk even with the most thoughtful mitigation measures when community transmission is high. Risk can be reduced, but the greater the likelihood that someone will be exposed in the community, the greater the risk they might pass the virus to others on campus or in the classroom.
There are still many unknowns about SARS-CoV-2 transmission, but some environments are known risks for virus transmission: enclosed spaces with crowds of people in close proximity over extended durations. Transmission is thought to occur predominantly through inhaled aerosols or droplets containing SARS-CoV-2, which are produced through common school activities such as breathing, speaking, or singing. Masks reduce but do not eliminate the production of these aerosols. Implementing universal mask-wearing and physical distancing guidelines will furthermore be extraordinarily challenging for very young children.
Smaller particle aerosols can remain suspended in the air and accumulate over time. In an enclosed space where people are gathering, such as a classroom, this renders risk mitigation measures such as physical distancing and masks ineffective. Many classrooms at all levels of education are not conducive to improving ventilation through low-cost measures such as opening windows, much less installing costly air filtration systems.
As a risk reduction measure, ventilation greatly depends on factors like window placement, window type, room size, room occupancy, building HVAC systems, and overall airflow. There isn't much hard data on the specific effects of ventilation on virus transmission, and the models that support ventilation rely on assumptions based on scant experimental evidence that doesn't account for virologic parameters.
There is also no data about how effective air filtration or UV systems would be for SARS-CoV-2 transmission risk reduction, so it's hard to say if this would result in a meaningful risk reduction or not. We don't have enough data outside of a hospital setting to support that ventilation and/or filtration would significantly reduce risk, and it's impractical (and most likely impossible in most schools) to implement hospital ventilation systems, which would likely require massive remodeling of existing HVAC infrastructure. In a close contact situation, the risk reduction might be minimal anyway since it's difficult to avoid exposure to respiratory aerosols and droplets a person is exhaling.
You'd need to get very low rates in the local community to open safely in person regardless of other risk reduction measures, and this would need to be complemented by robust testing and contact tracing capacity.
Efforts to resume in-person education depend heavily on school health and safety plans, which often rely on self-reporting of symptoms due to insufficient testing capacity. Self-reporting is notoriously unreliable, and furthermore, SARS-CoV-2 can be readily transmitted by pre-symptomatic individuals who may be unaware that they are sick, making testing an essential component of any such plan. Primary and secondary schools are faced with limited access to testing and no funds to support it. Even in institutions that include a testing component in their reopening plans, this is still too infrequent to support the full student body returning to campus.
Economic Conflicts of Interest
Rebecca Harrison, a PhD candidate at Cornell University serving on the campus reopening committee, is concerned that her institution's plan places too much faith in testing capacity and is over-reliant on untested models. Harrison says that, as a result, students are being implicitly encouraged to return to campus and "very little has been done to actively encourage students who are safe and able to stay home, to actually stay home."
Harrison also is concerned that her institution "presumably hopes to draw students back from the safety of their parents' basements to (re)join the residential campus experience ... and drive revenue." This is a legitimate concern. Some schools may be actively thwarting safety plans in place to protect students based on financial incentives. Student athletes at Colorado State have alleged that football coaches told them not to report COVID-19 symptoms and are manipulating contact tracing reports.
Public primary and secondary schools are not dependent on student athletics for revenue, but nonetheless are susceptible to state and federal policies that tie reopening to budgets. If schools are forced to make decisions based on a balance sheet, rather than the health and safety of students, teachers, and staff, they will implement health and safety plans that are inadequate. Schools will become ground zero for new clusters of cases.
Looking Ahead: When Will Schools Be Able to Open Again?
One crucial measure is the percent positivity rate in the local community, the number of positive tests based on all the tests that are done. Some states, like California, have implemented policies guiding the reopening of schools that depend in part on a local community's percent positivity rate falling under 8 percent, among other benchmarks including the rate of new daily cases. Currently, statewide, test positivity is below 7%, with an average of 3 new daily cases per 1000 people per day. However, the California department of health acknowledges that new cases per day are underreported. There are 6.3 million students in the California public school system, suggesting that at any given time, there could be nearly 20,000 students who might be contagious, without accounting for presymptomatic teachers and staff. In the classroom environment, just one of those positive cases could spread the virus to many people in one day despite masks, distancing, and ventilation.
You'd need to get very low rates in the local community to open safely in person regardless of other risk reduction measures, and this would need to be complemented by robust testing and contact tracing capacity. Only with rapid identification and isolation of new cases, followed by contact tracing and quarantine, can we break chains of transmission and prevent further spread in the school and the larger community.
None of these safety concerns diminish the many harms associated with the sudden and haphazard way remote learning has been implemented. Online education has not been effective in many cases and is difficult to implement equitably. Young children, in particular, are deprived of the essential social and intellectual development they would normally get in a classroom with teachers and their peers. Parents of young children are equally unprepared and unable to provide full-time instruction. Our federal leadership's catastrophic failure to contain the pandemic like other countries has put us in this terrible position, where we must choose between learning or spreading a deadly pathogen.
Blame aside, parents, educators, and administrators must decide whether to resume in-person classes this fall. Those decisions should be based on evidence, not on politics or economics. The data clearly shows that community transmission is out of control throughout most of the country. Thus, we ignore the risk of school outbreaks at our peril.
[Editor's Note: Here's the other essay in the Back to School series: 5 Key Questions to Consider Before Sending Your Child Back to School.]
Scientists find enzymes in nature that could replace toxic chemicals
Some 900 miles off the coast of Portugal, nine major islands rise from the mid-Atlantic. Verdant and volcanic, the Azores archipelago hosts a wealth of biodiversity that keeps field research scientist, Marlon Clark, returning for more. “You’ve got this really interesting biogeography out there,” says Clark. “There’s real separation between the continents, but there’s this inter-island dispersal of plants and seeds and animals.”
It’s a visual paradise by any standard, but on a microscopic level, there’s even more to see. The Azores’ nutrient-rich volcanic rock — and its network of lagoons, cave systems, and thermal springs — is home to a vast array of microorganisms found in a variety of microclimates with different elevations and temperatures.
Clark works for Basecamp Research, a biotech company headquartered in London, and his job is to collect samples from ecosystems around the world. By extracting DNA from soil, water, plants, microbes and other organisms, Basecamp is building an extensive database of the Earth’s proteins. While DNA itself isn’t a protein, the information stored in DNA is used to create proteins, so extracting, sequencing, and annotating DNA allows for the discovery of unique protein sequences.
Using what they’re finding in the middle of the Atlantic and beyond, Basecamp’s detailed database is constantly growing. The outputs could be essential for cleaning up the damage done by toxic chemicals and finding alternatives to these chemicals.
Catalysts for change
Proteins provide structure and function in all living organisms. Some of these functional proteins are enzymes, which quite literally make things happen.
“Industrial chemistry is heavily polluting, especially the chemistry done in pharmaceutical drug development. Biocatalysis is providing advantages, both to make more complex drugs and to be more sustainable, reducing the pollution and toxicity of conventional chemistry," says Ahir Pushpanath, who heads partnerships for Basecamp.
“Enzymes are perfectly evolved catalysts,” says Ahir Pushpanath, a partnerships lead at Basecamp. ”Enzymes are essentially just a polymer, and polymers are made up of amino acids, which are nature’s building blocks.” He suggests thinking about it like Legos — if you have a bunch of Lego pieces and use them to build a structure that performs a function, “that’s basically how an enzyme works. In nature, these monuments have evolved to do life’s chemistry. If we didn’t have enzymes, we wouldn’t be alive.”
In our own bodies, enzymes catalyze everything from vision to digesting food to regrowing muscles, and these same types of enzymes are necessary in the pharmaceutical, agrochemical and fine chemical industries. But industrial conditions differ from those inside our bodies. So, when scientists need certain chemical reactions to create a particular product or substance, they make their own catalysts in their labs — generally through the use of petroleum and heavy metals.
These petrochemicals are effective and cost-efficient, but they’re wasteful and often hazardous. With growing concerns around sustainability and long-term public health, it's essential to find alternative solutions to toxic chemicals. “Industrial chemistry is heavily polluting, especially the chemistry done in pharmaceutical drug development,” Pushpanath says.
Basecamp is trying to replace lab-created catalysts with enzymes found in the wild. This concept is called biocatalysis, and in theory, all scientists have to do is find the right enzymes for their specific need. Yet, historically, researchers have struggled to find enzymes to replace petrochemicals. When they can’t identify a suitable match, they turn to what Pushpanath describes as “long, iterative, resource-intensive, directed evolution” in the laboratory to coax a protein into industrial adaptation. But the latest scientific advances have enabled these discoveries in nature instead.
Marlon Clark, a research scientist at Basecamp Research, looks for novel biochemistries in the Azores.
Glen Gowers
Enzyme hunters
Whether it’s Clark and a colleague setting off on an expedition, or a local, on-the-ground partner gathering and processing samples, there’s a lot to be learned from each collection. “Microbial genomes contain complete sets of information that define an organism — much like how letters are a code allowing us to form words, sentences, pages, and books that contain complex but digestible knowledge,” Clark says. He thinks of the environmental samples as biological libraries, filled with thousands of species, strains, and sequence variants. “It’s our job to glean genetic information from these samples.”
“We can actually dream up new proteins using generative AI," Pushpanath says.
Basecamp researchers manage this feat by sequencing the DNA and then assembling the information into a comprehensible structure. “We’re building the ‘stories’ of the biota,” Clark says. The more varied the samples, the more valuable insights his team gains into the characteristics of different organisms and their interactions with the environment. Sequencing allows scientists to examine the order of nucleotides — the organic molecules that form DNA — to identify genetic makeups and find changes within genomes. The process used to be too expensive, but the cost of sequencing has dropped from $10,000 a decade ago to as low as $100. Notably, biocatalysis isn’t a new concept — there have been waves of interest in using natural enzymes in catalysis for over a century, Pushpanath says. “But the technology just wasn’t there to make it cost effective,” he explains. “Sequencing has been the biggest boon.”
AI is probably the second biggest boon.
“We can actually dream up new proteins using generative AI,” Pushpanath says, which means that biocataylsis now has real potential to scale.
Glen Gowers, the co-founder of Basecamp, compares the company’s AI approach to that of social networks and streaming services. Consider how these platforms suggest connecting with the friends of your friends, or how watching one comedy film from the 1990s leads to a suggestion of three more.
“They’re thinking about data as networks of relationships as opposed to lists of items,” says Gowers. “By doing the same, we’re able to link the metadata of the proteins — by their relationships to each other, the environments in which they’re found, the way those proteins might look similar in sequence and structure, their surrounding genome context — really, this just comes down to creating a searchable network of proteins.”
On an Azores island, this volcanic opening may harbor organisms that can help scientists identify enzymes for biocatalysis to replace toxic chemicals.
Emma Bolton
Uwe Bornscheuer, professor at the Institute of Biochemistry at the University of Greifswald, and co-founder of Enzymicals, another biocatalysis company, says that the development of machine learning is a critical component of this work. “It’s a very hot topic, because the challenge in protein engineering is to predict which mutation at which position in the protein will make an enzyme suitable for certain applications,” Bornscheuer explains. These predictions are difficult for humans to make at all, let alone quickly. “It is clear that machine learning is a key technology.”
Benefiting from nature’s bounty
Biodiversity commonly refers to plants and animals, but the term extends to all life, including microbial life, and some regions of the world are more biodiverse than others. Building relationships with global partners is another key element to Basecamp’s success. Doing so in accordance with the access and benefit sharing principles set forth by the Nagoya Protocol — an international agreement that seeks to ensure the benefits of using genetic resources are distributed in a fair and equitable way — is part of the company's ethos. “There's a lot of potential for us, and there’s a lot of potential for our partners to have exactly the same impact in building and discovering commercially relevant proteins and biochemistries from nature,” Clark says.
Bornscheuer points out that Basecamp is not the first company of its kind. A former San Diego company called Diversa went public in 2000 with similar work. “At that time, the Nagoya Protocol was not around, but Diversa also wanted to ensure that if a certain enzyme or microorganism from Costa Rica, for example, were used in an industrial process, then people in Costa Rica would somehow profit from this.”
An eventual merger turned Diversa into Verenium Corporation, which is now a part of the chemical producer BASF, but it laid important groundwork for modern companies like Basecamp to continue to scale with today’s technologies.
“To collect natural diversity is the key to identifying new catalysts for use in new applications,” Bornscheuer says. “Natural diversity is immense, and over the past 20 years we have gained the advantages that sequencing is no longer a cost or time factor.”
This has allowed Basecamp to rapidly grow its database, outperforming Universal Protein Resource or UniProt, which is the public repository of protein sequences most commonly used by researchers. Basecamp’s database is three times larger, totaling about 900 million sequences. (UniProt isn’t compliant with the Nagoya Protocol, because, as a public database, it doesn’t provide traceability of protein sequences. Some scientists, however, argue that Nagoya compliance hinders progress.)
“Eventually, this work will reduce chemical processes. We’ll have cleaner processes, more sustainable processes," says Uwe Bornscheuer, a professor at the University of Greifswald.
With so much information available, Basecamp’s AI has been trained on “the true dictionary of protein sequence life,” Pushpanath says, which makes it possible to design sequences for particular applications. “Through deep learning approaches, we’re able to find protein sequences directly from our database, without the need for further laboratory-directed evolution.”
Recently, a major chemical company was searching for a specific transaminase — an enzyme that catalyzes a transfer of amino groups. “They had already spent a year-and-a-half and nearly two million dollars to evolve a public-database enzyme, and still had not reached their goal,” Pushpanath says. “We used our AI approaches on our novel database to yield 10 candidates within a week, which, when validated by the client, achieved the desired target even better than their best-evolved candidate.”
Basecamp’s other huge potential is in bioremediation, where natural enzymes can help to undo the damage caused by toxic chemicals. “Biocatalysis impacts both sides,” says Gowers. “It reduces the usage of chemicals to make products, and at the same time, where contamination sites do exist from chemical spills, enzymes are also there to kind of mop those up.”
So far, Basecamp's round-the-world sampling has covered 50 percent of the 14 major biomes, or regions of the planet that can be distinguished by their flora, fauna, and climate, as defined by the World Wildlife Fund. The other half remains to be catalogued — a key milestone for understanding our planet’s protein diversity, Pushpanath notes.
There’s still a long road ahead to fully replace petrochemicals with natural enzymes, but biocatalysis is on an upward trajectory. "Eventually, this work will reduce chemical processes,” Bornscheuer says. “We’ll have cleaner processes, more sustainable processes.”
Small changes in how a person talks could reveal Alzheimer’s earlier
Dave Arnold retired in his 60s and began spending time volunteering in local schools. But then he started misplacing items, forgetting appointments and losing his sense of direction. Eventually he was diagnosed with early stage Alzheimer’s.
“Hearing the diagnosis made me very emotional and tearful,” he said. “I immediately thought of all my mom had experienced.” His mother suffered with the condition for years before passing away. Over the last year, Arnold has worked for the Alzheimer’s Association as one of its early stage advisors, sharing his insights to help others in the initial stages of the disease.
Arnold was diagnosed sooner than many others. It's important to find out early, when interventions can make the most difference. One promising avenue is looking at how people talk. Research has shown that Alzheimer’s affects a part of the brain that controls speech, resulting in small changes before people show other signs of the disease.
Now, Canary Speech, a company based in Utah, is using AI to examine elements like the pitch of a person’s voice and their pauses. In an initial study, Canary analyzed speech recordings with AI and identified early stage Alzheimer’s with 96 percent accuracy.
Developing the AI model
Canary Speech’s CEO, Henry O’Connell, met cofounder Jeff Adams about 40 years before they started the company. Back when they first crossed paths, they were both living in Bethesda, Maryland; O’Connell was a research fellow at the National Institutes of Health studying rare neurological diseases, while Adams was working to decode spy messages. Later on, Adams would specialize in building mathematical models to analyze speech and sound as a team leader in developing Amazon's Alexa.
It wasn't until 2015 that they decided to make use of the fit between their backgrounds. ““We established Canary Speech in 2017 to build a product that could be used in multiple languages in clinical environments,” O'Connell says.
The need is growing. About 55 million people worldwide currently live with Alzheimer’s, a number that is expected to double by 2050. Some scientists think the disease results from a buildup of plaque in the brain. It causes mild memory loss at first and, over time, this issue get worse while other symptoms, such as disorientation and hallucinations, can develop. Treatment to manage the disease is more effective in the earlier stages, but detection is difficult since mild symptoms are often attributed to the normal aging process.
O’Connell and Adams specialize in the complex ways that Alzheimer’s effects how people speak. Using AI, their mathematical model analyzes 15 million data points every minute, focusing on certain features of speech such as pitch, pauses and elongation of words. It also pays attention to how the vibrations of vocal cords change in different stages of the disease.
To create their model, the team used a type of machine learning called deep neural nets, which looks at multiple layers of data - in this case, the multiple features of a person’s speech patterns.
“Deep neural nets allow us to look at much, much larger data sets built out of millions of elements,” O’Connell explained. “Through machine learning and AI, we’ve identified features that are very sensitive to an Alzheimer’s patient versus [people without the disease] and also very sensitive to mild cognitive impairment, early stage and moderate Alzheimer's.” Based on their learnings, Canary is able to classify the disease stage very quickly, O’Connell said.
“When we’re listening to sublanguage elements, we’re really analyzing the direct result of changes in the brain in the physical body,” O’Connell said. “The brain controls your vocal cords: how fast they vibrate, the expansion of them, the contraction.” These factors, along with where people put their tongues when talking, function subconsciously and result in subtle changes in the sounds of speech.
Further testing is needed
In an initial trial, Canary analyzed speech recordings from phone calls to a large U.S. health insurer. They looked at the audio recordings of 651 policyholders who had early stage Alzheimer’s and 1018 who did not have the condition, aiming for a representative sample of age, gender and race. They used this data to create their first diagnostic model and found that it was 96 percent accurate in identifying Alzheimer’s.
Christian Herff, an assistant professor of neuroscience at Maastricht University in the Netherlands, praised this approach while adding that further testing is needed to assess its effectiveness.
“I think the general idea of identifying increased risk for cognitive impairment based on speech characteristics is very feasible, particularly when change in a user’s voice is monitored, for example, by recording speech every year,” Herff said. He noted that this can only be a first indication, not a full diagnosis. The accuracy still needs to be validated in studies that follows individuals over a period of time, he said.
Toby Walsh, a professor of artificial intelligence at the University of New South Wales, also thinks Canary’s tool has potential but highlights that Canary could diagnose some people who don’t really have the disease. “This is an interesting and promising application of AI,” he said, “but these tools need to be used carefully. Imagine the anxiety of being misdiagnosed with Alzheimer’s.”
As with many other AI tools, privacy and bias are additional issues to monitor closely, Walsh said.
Other languages
A related issue is that not everyone is fluent in English. Mahnaz Arvaneh, a senior lecturer in automatic control and systems engineering at the University of Sheffield, said this could be a blind spot.
“The system may not be very accurate for those who have English as their second language as their speaking patterns would be different, and any issue might be because of language deficiency rather than cognitive issues,” Arvaneh said.
The team is expanding to multiple languages starting with Japanese and Spanish. The elements of the model that make up the algorithm are very similar, but they need to be validated and retrained in a different language, which will require access to more data.
Recently, Canary analyzed the phone calls of 233 Japanese patients who had mild cognitive impairment and 704 healthy people. Using an English model they were able to identify the Japanese patients who had mild cognitive impairment with 78 percent accuracy. They also developed a model in Japanese that was 45 percent accurate, and they’re continuing to train it with more data.
The future
Canary is using their model to look at other diseases like Huntington’s and Parkinson’s. They’re also collaborating with pharmaceuticals to validate potential therapies for Alzheimer’s. By looking at speech patterns over time, Canary can get an indication of how well these drugs are working.
Dave Arnold and his wife dance at his nephew’s wedding in Rochester, New York, ten years ago, before his Alzheimer's diagnosis.
Dave Arnold
Ultimately, they want to integrate their tool into everyday life. “We want it to be used in a smartphone, or a teleconference call so that individuals could be examined in their home,” O’Connell said. “We could follow them over time and work with clinical teams and hospitals to improve the evaluation of patients and contribute towards an accurate diagnosis.”
Arnold, the patient with early stage Alzheimer’s, sees great promise. “The process of getting a diagnosis is already filled with so much anxiety,” he said. “Anything that can be done to make it easier and less stressful would be a good thing, as long as it’s proven accurate.”