Meet Your Child’s New Nanny: A Robot
Would you leave your small child in the care of a robot for several hours a day? It may sound laughable at first, but think carefully.
"Given the huge amounts of money we pay for childcare, a [robot caregiver] is a very attractive proposition."
Robots that can care for children would be a godsend to many parents, especially the financially strapped. In the U.S., 62 percent of women who gave birth in 2016 worked outside the home, and day care costs are often exorbitant. In California, for instance, the annual cost for day care for a single child averages over $22,000. The price is lower in some states, but it still accounts for a hefty chunk of the typical family's budget.
"We're talking about the Holy Grail of parenting," says Zoltan Istvan, a technology consultant and futurist. "Imagine a robot that could assume 70 percent to 80 percent of the caregiver's role for your child. Given the huge amounts of money we pay for childcare, that's a very attractive proposition."
Both China and Japan are on the leading edge of employing specially designed social robots for the care of children. Due to long work schedules, shifting demographics and China's long-term (but now defunct) one-child policy, both countries have a severe shortage of family caregivers. Enter the iPal, a child-sized humanoid robot with a round head, expressive face and articulated fingers, which can keep children engaged and entertained for hours on end. According to its manufacturer, AvatarMind Robot Technology, iPal is already selling like hotcakes in Asia and is expected to be available in the U.S. within the next year. The standard version of iPal sells for $2,499, and it's not the only robot claimed to be suitable for childcare. Other robots being fine-tuned are Softbank's humanoid models Pepper and NAO, which are also considered to be child-friendly social robots.
iPal talks, dances, plays games, reads stories and plugs into social media and the internet. According to AvatarMind, over time iPal learns your child's likes and dislikes, and can independently learn more about subjects your child is interested in to boost learning. In addition, it will wake your child up in the morning and tell him when it's time to get dressed, brush his teeth or wash his hands. If your child is a diabetic, it will remind her when it's time to check her blood sugar. But iPal isn't just a fancy appliance that mechanically performs these functions; it does so with "personality."
iPal robot interacting with a boy.
The robot has an "emotion management system" that detects your child's emotions and mirrors them (unless your child is sad, and then it tries to cheer him up). But it's not exactly like iPal has the kind of emotion chip long sought by Star Trek's android Data. What it does is emotional simulation--what some would call emotional dishonesty--considering that it doesn't actually feel anything. But research has shown that the lack of authenticity doesn't really matter when it comes to the human response to feigned emotion.
Children, and even adults, tend to respond to "emotional" robots as though they're alive and sentient even when we've seen all the wires and circuit boards that underlie their wizardry. In fact, we're hardwired to respond to them as though they are human beings in a real relationship with us.
The question is whether the relationships we develop with robots causes social maladaptation, especially among the most vulnerable among us—young children just learning how to connect and interact with others. Could a robot in fact come close to providing the authentic back-and-forth that helps children develop empathy, reciprocity, and self-esteem? Also, could steady engagement with a robot nanny diminish precious time needed for real family bonding?
It depends on whom you ask.
Because iPal is voice-activated, it frees children to learn by interacting in a way that's more natural than interacting with traditional toys, says Dr. Daniel Xiong, Co-founder and Chief Technology Officer at AvatarMind. "iPal is like a "real" family member with you whenever you need it," he says.
Xiong doesn't put a time limit on how long a child should interact with iPal on a daily basis. He sees the relationship between the child and the robot as healthy, though he admits that the technology needs to advance substantially before iPal could take the place of a human babysitter.
It's no coincidence that many toymakers and manufacturers are designing cute robots that look and behave like real children or animals, says Sherry Turkle, a Professor of Social Studies and Science at MIT. "When they make eye contact and gesture toward us, they predispose us to view them as thinking and caring," she has written in The Washington Post. "They are designed to be cute, to provide a nurturing response" from the child. "And when it comes to sociable AI, nurturance is the killer app: We nurture what we love, and we love what we nurture."
What are we saying to children about their importance to us when we're willing to outsource their care to a robot?
The problem is that we get lulled into thinking that we're in an actual relationship, when a robot can't possibly love us back. If adults have these vulnerabilities, what might such lopsided relationships do to the emotional development of a small child? Turkle notes that while we tend to ascribe a mind and emotions to a socially interactive robot, "Simulated thinking may be thinking, but simulated feeling is never feeling, and simulated love is never love."
Still, is active, playful engagement with a robot for a few hours a day any more harmful than several hours in front of a TV or with an iPad? Some, like Xiong, regard interacting with a robot as better than mere passive entertainment. iPal's manufacturers say that their robot can't replace parents or teachers and is best used by three- to eight-year-olds after school, while they wait for their parents to get off of work. But as robots become ever more sophisticated, they're expected to become more and more captivating, and to perform more of the tasks of day-to-day care.
Some studies, performed by Turkle and fellow MIT colleague Cynthia Breazeal, have revealed a darker side to child-robot interaction. Turkle has reported extensively on these studies in The Washington Post and in her 2011 book, Alone Together: Why We Expect More from Technology and Less from Each Other. Most children love robots, but some act out their inner bully on the hapless machines, hitting and kicking them and otherwise trying to hurt them. The trouble is that the robot can't fight back, teaching children that they can bully and abuse without consequences. Such harmful behavior could carry over into the child's human relationships.
And it turns out that communicative machines don't actually teach kids good communication skills. It's well known that parent-child communication in the first three years of life sets the stage for a child's intellectual and academic success. Verbal back-and-forth with parents and caregivers is like food for a child's growing brain. One article published in JAMA Pediatrics showed that babies who played with electronic toys—like the popular robot dog AIBO—show a decrease in both the quantity and quality of their language skills.
Anna V. Sosa of the Child Speech and Language Lab at Northern Arizona University studied 26 ten- to 16-month-old infants to compare the growth of their language skills after they played with three types of toys: Electronic toys like a baby laptop and talking farm; traditional toys like wooden puzzles and building blocks; and books read aloud by their parents.
The play that produced the most growth in verbal ability was having books read to them, followed by play with traditional toys. Language gains after playing with electronic toys came dead last. This form of play involved the least use of adult words, the least conversational turn-taking with parents, and the least verbalizations from the children. While the study sample was small, it's not hard to extrapolate that no electronic toy or even more abled robot could supply the intimate responsiveness of a parent reading stories to a child, explaining new words, answering the child's questions, and modeling the kind of back-and-forth interaction that promotes empathy and reciprocity in human relationships.
Most experts acknowledge that robots can be valuable educational tools, but they can't make a child feel truly loved, validated, and valued.
Research suggests that the main problem of leaving children in the care of robots on a regular basis is the risk of their stunted, unhealthy emotional development. In Alone Together, Turkle asks: What are we saying to children about their importance to us when we're willing to outsource their care to a robot? A child might be superficially entertained by the robot while her self-esteem is systematically undermined.
Two of the most vocal critics of robot nannies are researchers at the University of Sheffield in the U.K., Noel and Amanda Sharkey. In an article published in the journal Interaction Studies, they claim that the overuse of childcare robots could have serious consequences for the psychological and emotional wellbeing of children.
They acknowledge that limited use of robots can have positive effects like keeping a child safe from physical harm, allowing remote monitoring and supervision by parents, keeping a child entertained, and stimulating an interest in science and engineering. But the Sharkeys see the overuse of robots as a source of emotional alienation between parents and children. Just regularly plopping a child down with a robot for hours of interaction could be a form of neglect that panders to busy parents at the cost of a child's emotional development.
Robots, the Sharkeys argue, prey upon a child's natural tendency to anthropomorphize, which sucks them into a pseudo-relationship with a machine that can never return their affection. This can be seen as a form of emotional exploitation—a machine that promises connection but can never truly deliver. Furthermore, as robots develop more intimate skills such as bathing, feeding and changing diapers, children will lose out on some of the most fundamental and precious bonding activities with their parents.
Critics say that children's natural ability to bond is prime territory for exploitation by toy and robot manufacturers, who ultimately have a commercial agenda. The Sharkeys noted one study in which a state-of-the-art robot was employed in a daycare center. The ten- to 20-month-old children bonded more deeply with the robot than with a teddy bear. It's not hard to see that starting the robot-bonding process early in life is good for robot business, as babies and toddlers graduate to increasingly sophisticated machines.
"It is possible that exclusive or near exclusive care of a child by a robot could result in cognitive and linguistic impairments," say the Sharkeys. They cite the danger of a child developing what is called in psychology a pathological attachment disorder. Attachment disorders occur when parents are unpredictable or neglectful in their emotional responsiveness. The resulting shaky bond interferes with a child's ability to feel trust, pleasure, safety, and comfort in the presence of the parent. Unhealthy patterns of attachment include "insecure attachment," a form of anxiety that arises when a child cannot trust his caregiver with meeting his emotional needs. Children with attachment disorders may anxiously avoid attachments and may not be able to experience empathy, the cornerstone of relationships. Such patterns can follow a child throughout life and infect every other relationship they have.
An example of the inadequacy of robot nannies rests on the pre-programmed emotional responses they have in their repertoires. They're designed to detect and mirror a child's emotions and do things like play a child's favorite song when he's crying or in distress. But such a response could be the height of insensitivity. It discounts and belittles what may be a child's authentic response to an upsetting turn of events, like a scraped knee from a fall. A robot playing a catchy jingle is a far cry from having Mom clean and dress the wound, and perhaps more importantly, kiss it and make it better.
Most experts acknowledge that robots can be valuable educational tools. But they can't make a child feel truly loved, validated, and valued. That's the job of parents, and when parents abdicate this responsibility, it's not only the child that misses out on one of life's most profound experiences.
So consider buying a robot to entertain and educate your little one—just make sure you're close by for the true bonding opportunities that arrive so fast and last so fleetingly in the life of a child.
Stronger psychedelics that rewire the brain, with Doug Drysdale
A promising development in science in recent years has been the use technology to optimize something natural. One-upping nature's wisdom isn't easy. In many cases, we haven't - and maybe we can't - figure it out. But today's episode features a fascinating example: using tech to optimize psychedelic mushrooms.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
These mushrooms have been used for religious, spiritual and medicinal purposes for thousands of years, but only in the past several decades have scientists brought psychedelics into the lab to enhance them and maximize their therapeutic value.
Today’s podcast guest, Doug Drysdale, is doing important work to lead this effort. Drysdale is the CEO of a company called Cybin that has figured out how to make psilocybin more potent, so it can be administered in smaller doses without side effects.
The natural form of psilocybin has been studied increasingly in the realm of mental health. Taking doses of these mushrooms appears to help people with anxiety and depression by spurring the development of connections in the brain, an example of neuroplasticity. The process basically shifts the adult brain from being fairly rigid like dried clay into a malleable substance like warm wax - the state of change that's constantly underway in the developing brains of children.
Neuroplasticity in adults seems to unlock some of our default ways of of thinking, the habitual thought patterns that’ve been associated with various mental health problems. Some promising research suggests that psilocybin causes a reset of sorts. It makes way for new, healthier thought patterns.
So what is Drysdale’s secret weapon to bring even more therapeutic value to psilocybin? It’s a process called deuteration. It focuses on the hydrogen atoms in psilocybin. These atoms are very light and don’t stick very well to carbon, which is another atom in psilocybin. As a result, our bodies can easily breaks down the bonds between the hydrogen and carbon atoms. For many people, that means psilocybin gets cleared from the body too quickly, before it can have a therapeutic benefit.
In deuteration, scientists do something simple but ingenious: they replace the hydrogen atoms with a molecule called deuterium. It’s twice as heavy as hydrogen and forms tighter bonds with the carbon. Because these pairs are so rock-steady, they slow down the rate at which psilocybin is metabolized, so it has more sustained effects on our brains.
Cybin isn’t Drysdale’s first go around at this - far from it. He has over 30 years of experience in the healthcare sector. During this time he’s raised around $4 billion of both public and private capital, and has been named Ernst and Young Entrepreneur of the Year. Before Cybin, he was the founding CEO of a pharmaceutical company called Alvogen, leading it from inception to around $500 million in revenues, across 35 countries. Drysdale has also been the head of mergers and acquisitions at Actavis Group, leading 15 corporate acquisitions across three continents.
In this episode, Drysdale walks us through the promising research of his current company, Cybin, and the different therapies he’s developing for anxiety and depression based not just on psilocybin but another psychedelic compound found in plants called DMT. He explains how they seem to have such powerful effects on the brain, as well as the potential for psychedelics to eventually support other use cases, including helping us strive toward higher levels of well-being. He goes on to discuss his views on mindfulness and lifestyle factors - such as optimal nutrition - that could help bring out hte best in psychedelics.
Show links:
Doug Drysdale full bio
Doug Drysdale twitter
Cybin website
Cybin development pipeline
Cybin's promising phase 2 research on depression
Johns Hopkins psychedelics research and psilocybin research
Mets owner Steve Cohen invests in psychedelic therapies
Doug Drysdale, CEO of Cybin
How the body's immune resilience affects our health and lifespan
Story by Big Think
It is a mystery why humans manifest vast differences in lifespan, health, and susceptibility to infectious diseases. However, a team of international scientists has revealed that the capacity to resist or recover from infections and inflammation (a trait they call “immune resilience”) is one of the major contributors to these differences.
Immune resilience involves controlling inflammation and preserving or rapidly restoring immune activity at any age, explained Weijing He, a study co-author. He and his colleagues discovered that people with the highest level of immune resilience were more likely to live longer, resist infection and recurrence of skin cancer, and survive COVID and sepsis.
Measuring immune resilience
The researchers measured immune resilience in two ways. The first is based on the relative quantities of two types of immune cells, CD4+ T cells and CD8+ T cells. CD4+ T cells coordinate the immune system’s response to pathogens and are often used to measure immune health (with higher levels typically suggesting a stronger immune system). However, in 2021, the researchers found that a low level of CD8+ T cells (which are responsible for killing damaged or infected cells) is also an important indicator of immune health. In fact, patients with high levels of CD4+ T cells and low levels of CD8+ T cells during SARS-CoV-2 and HIV infection were the least likely to develop severe COVID and AIDS.
Individuals with optimal levels of immune resilience were more likely to live longer.
In the same 2021 study, the researchers identified a second measure of immune resilience that involves two gene expression signatures correlated with an infected person’s risk of death. One of the signatures was linked to a higher risk of death; it includes genes related to inflammation — an essential process for jumpstarting the immune system but one that can cause considerable damage if left unbridled. The other signature was linked to a greater chance of survival; it includes genes related to keeping inflammation in check. These genes help the immune system mount a balanced immune response during infection and taper down the response after the threat is gone. The researchers found that participants who expressed the optimal combination of genes lived longer.
Immune resilience and longevity
The researchers assessed levels of immune resilience in nearly 50,000 participants of different ages and with various types of challenges to their immune systems, including acute infections, chronic diseases, and cancers. Their evaluation demonstrated that individuals with optimal levels of immune resilience were more likely to live longer, resist HIV and influenza infections, resist recurrence of skin cancer after kidney transplant, survive COVID infection, and survive sepsis.
However, a person’s immune resilience fluctuates all the time. Study participants who had optimal immune resilience before common symptomatic viral infections like a cold or the flu experienced a shift in their gene expression to poor immune resilience within 48 hours of symptom onset. As these people recovered from their infection, many gradually returned to the more favorable gene expression levels they had before. However, nearly 30% who once had optimal immune resilience did not fully regain that survival-associated profile by the end of the cold and flu season, even though they had recovered from their illness.
Intriguingly, some people who are 90+ years old still have optimal immune resilience, suggesting that these individuals’ immune systems have an exceptional capacity to control inflammation and rapidly restore proper immune balance.
This could suggest that the recovery phase varies among people and diseases. For example, young female sex workers who had many clients and did not use condoms — and thus were repeatedly exposed to sexually transmitted pathogens — had very low immune resilience. However, most of the sex workers who began reducing their exposure to sexually transmitted pathogens by using condoms and decreasing their number of sex partners experienced an improvement in immune resilience over the next 10 years.
Immune resilience and aging
The researchers found that the proportion of people with optimal immune resilience tended to be highest among the young and lowest among the elderly. The researchers suggest that, as people age, they are exposed to increasingly more health conditions (acute infections, chronic diseases, cancers, etc.) which challenge their immune systems to undergo a “respond-and-recover” cycle. During the response phase, CD8+ T cells and inflammatory gene expression increase, and during the recovery phase, they go back down.
However, over a lifetime of repeated challenges, the immune system is slower to recover, altering a person’s immune resilience. Intriguingly, some people who are 90+ years old still have optimal immune resilience, suggesting that these individuals’ immune systems have an exceptional capacity to control inflammation and rapidly restore proper immune balance despite the many respond-and-recover cycles that their immune systems have faced.
Public health ramifications could be significant. Immune cell and gene expression profile assessments are relatively simple to conduct, and being able to determine a person’s immune resilience can help identify whether someone is at greater risk for developing diseases, how they will respond to treatment, and whether, as well as to what extent, they will recover.