Mind the (Vote) Gap: Can We Get More STEM Students to the Polls?
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
By the numbers, American college students who major in STEM disciplines—science, technology, engineering, and math—aren't big on voting. In fact, recent research suggests they're the least likely group of students to head to the ballot box, even as American political leaders cast doubt on the very kinds of expertise those students are developing on campus.
Worried educators say it's time for a rethink of STEM education at the college level. Armed with success stories and model courses, educators are pushing for colleagues to add relevance to STEM education—and instill a sense of civic duty—by bringing the outside world in.
"It's a matter of what's in the curriculum, how faculty spend their time. There are opportunities to weave [policy] within the curriculum," said Nancy L. Thomas, director of Tufts University's Institute for Democracy & Higher Education.
The most recent student voting numbers come from the 2018 mid-term election, when a national Democratic wave brought voters to the polls. Just over a third of STEM college students surveyed said they voted, the lowest percentage of six subject areas, according to a report from the institute at Tufts. Students in the education, social sciences, and humanities fields had the highest voting rates at 47%, 41%, and 39%, respectively.
Students across the board were much less engaged in the mid-year election of 2014, when just 28% of education students surveyed said they voted. STEM students again stood at the rear, with just 16% voting.
(The report analyzed whether more than 10 million college students at 1,031 U.S. institutions voted in 2014 and 2018. At the request of this magazine, the institute at Tufts removed non-U.S. resident students—who can't vote—from the findings to see if the results changed. Voting rates among STEM students remained among the lowest.)
Why aren't STEM students engaged in politics? "I have no reason to think that science students don't care about public policy issues," Tufts University's Thomas said. Instead, she believes that colleges fail to inspire STEM students to think beyond lectures and homework.
Enter the SENCER project—Science Education for New Civic Engagements and Responsibilities. Since 2001, the project has taught thousands of educators and students how to connect science and citizenship.
The roots of the project go back to 1990, when Rutgers University microbiologist Monica Devanas was assigned to teach a general-education class called "Biomedical Issues of AIDS." She decided to expand the curriculum to encompass insights about a wide range of societal issues. Guest speakers from the community, including a man with a grim diagnosis, talked about the disease and its spread. And Devanas's colleagues in a wide variety of disciplines offered course sections about AIDS and its role in areas such as literature, prisons and law.
"I always tried to make a connection, hoping to create scientifically engaged citizens by explaining the science to them in ways that they could understand."
When she first taught the class, 450 students signed up instead of the expected 100. Devanas, who'd only ever taught a few dozen students with a blackboard, suddenly had to figure out how to teach hundreds at once with the standard technology of the time: an overhead projector.
Devanas, who taught the hugely popular class for the next 18 years, said the course worked because it linked the AIDS epidemic, a hot topic at the time, to the outer world beyond immune cells and test tubes. "You really need to make it very personal and relevant. When you talk about treatment for AIDS or the cost of drugs: Who pays for this?" she said. "I always tried to make a connection, hoping to create scientifically engaged citizens by explaining the science to them in ways that they could understand."
How can other educators learn to create compelling courses? The SENCER website offers dozens of model classes for college and K–12 educators, all with the aim of making STEM classes relevant. An engineering course, for example, could expand a discussion about the nuts and bolts of automated vehicles into a conversation about whether the cars are a good idea in the first place, said Eliza J. Reilly, executive director of the National Center for Science and Civic Engagement, where SENCER is based.
SENCER, which is government-funded, holds regular conferences and has conducted research that supports the effectiveness of its programs. "This is an educational and intellectual project rather than a get-out-the-vote project. It's not intended to create activists. Instead, it's intended to help students understand that they have power as citizens," Reilly said.
What about long-term change? Will inspiring college students to engage with politics turn them into lifetime voters? Reilly said she's not aware of any research into whether STEM students continue to vote at lower levels after they graduate. That means there's no way to know if limited civic engagement in college translates to lifelong apathy. We also don't know if lower voting rates in college may help explain why few people with STEM backgrounds run for higher office.
There's another big unknown: If more people with STEM degrees vote, will they actually support fact-based policies and candidates who listen to science? The answer is not as obvious as it may appear. At Rutgers, professor Devanas pointed to the research of Yale University law/psychology professor Dan Kahan, who found that the most scientifically literate people in the U.S. also happen to be among those most polarized over climate change. In other words, a scientific mind may not necessarily translate to a pro-science vote.
Regardless of the ultimate choices that STEM students make at the ballot box, advocates will keep encouraging educators to connect science to the world beyond the classroom. As Tufts University's Thomas explained, "it just takes a lot of creativity and will."
[Editor's Note: To read other articles in this special magazine issue, visit the beautifully designed e-reader version.]
If you were one of the millions who masked up, washed your hands thoroughly and socially distanced, pat yourself on the back—you may have helped change the course of human history.
Scientists say that thanks to these safety precautions, which were introduced in early 2020 as a way to stop transmission of the novel COVID-19 virus, a strain of influenza has been completely eliminated. This marks the first time in human history that a virus has been wiped out through non-pharmaceutical interventions, such as vaccines.
The flu shot, explained
Influenza viruses type A and B are responsible for the majority of human illnesses and the flu season.
Centers for Disease Control
For more than a decade, flu shots have protected against two types of the influenza virus–type A and type B. While there are four different strains of influenza in existence (A, B, C, and D), only strains A, B, and C are capable of infecting humans, and only A and B cause pandemics. In other words, if you catch the flu during flu season, you’re most likely sick with flu type A or B.
Flu vaccines contain inactivated—or dead—influenza virus. These inactivated viruses can’t cause sickness in humans, but when administered as part of a vaccine, they teach a person’s immune system to recognize and kill those viruses when they’re encountered in the wild.
Each spring, a panel of experts gives a recommendation to the US Food and Drug Administration on which strains of each flu type to include in that year’s flu vaccine, depending on what surveillance data says is circulating and what they believe is likely to cause the most illness during the upcoming flu season. For the past decade, Americans have had access to vaccines that provide protection against two strains of influenza A and two lineages of influenza B, known as the Victoria lineage and the Yamagata lineage. But this year, the seasonal flu shot won’t include the Yamagata strain, because the Yamagata strain is no longer circulating among humans.
How Yamagata Disappeared
Flu surveillance data from the Global Initiative on Sharing All Influenza Data (GISAID) shows that the Yamagata lineage of flu type B has not been sequenced since April 2020.
Nature
Experts believe that the Yamagata lineage had already been in decline before the pandemic hit, likely because the strain was naturally less capable of infecting large numbers of people compared to the other strains. When the COVID-19 pandemic hit, the resulting safety precautions such as social distancing, isolating, hand-washing, and masking were enough to drive the virus into extinction completely.
Because the strain hasn’t been circulating since 2020, the FDA elected to remove the Yamagata strain from the seasonal flu vaccine. This will mark the first time since 2012 that the annual flu shot will be trivalent (three-component) rather than quadrivalent (four-component).
Should I still get the flu shot?
The flu shot will protect against fewer strains this year—but that doesn’t mean we should skip it. Influenza places a substantial health burden on the United States every year, responsible for hundreds of thousands of hospitalizations and tens of thousands of deaths. The flu shot has been shown to prevent millions of illnesses each year (more than six million during the 2022-2023 season). And while it’s still possible to catch the flu after getting the flu shot, studies show that people are far less likely to be hospitalized or die when they’re vaccinated.
Another unexpected benefit of dropping the Yamagata strain from the seasonal vaccine? This will possibly make production of the flu vaccine faster, and enable manufacturers to make more vaccines, helping countries who have a flu vaccine shortage and potentially saving millions more lives.
After his grandmother’s dementia diagnosis, one man invented a snack to keep her healthy and hydrated.
On a visit to his grandmother’s nursing home in 2016, college student Lewis Hornby made a shocking discovery: Dehydration is a common (and dangerous) problem among seniors—especially those that are diagnosed with dementia.
Hornby’s grandmother, Pat, had always had difficulty keeping up her water intake as she got older, a common issue with seniors. As we age, our body composition changes, and we naturally hold less water than younger adults or children, so it’s easier to become dehydrated quickly if those fluids aren’t replenished. What’s more, our thirst signals diminish naturally as we age as well—meaning our body is not as good as it once was in letting us know that we need to rehydrate. This often creates a perfect storm that commonly leads to dehydration. In Pat’s case, her dehydration was so severe she nearly died.
When Lewis Hornby visited his grandmother at her nursing home afterward, he learned that dehydration especially affects people with dementia, as they often don’t feel thirst cues at all, or may not recognize how to use cups correctly. But while dementia patients often don’t remember to drink water, it seemed to Hornby that they had less problem remembering to eat, particularly candy.
Where people with dementia often forget to drink water, they're more likely to pick up a colorful snack, Hornby found. alzheimers.org.uk
Hornby wanted to create a solution for elderly people who struggled keeping their fluid intake up. He spent the next eighteen months researching and designing a solution and securing funding for his project. In 2019, Hornby won a sizable grant from the Alzheimer’s Society, a UK-based care and research charity for people with dementia and their caregivers. Together, through the charity’s Accelerator Program, they created a bite-sized, sugar-free, edible jelly drop that looked and tasted like candy. The candy, called Jelly Drops, contained 95% water and electrolytes—important minerals that are often lost during dehydration. The final product launched in 2020—and was an immediate success. The drops were able to provide extra hydration to the elderly, as well as help keep dementia patients safe, since dehydration commonly leads to confusion, hospitalization, and sometimes even death.
Not only did Jelly Drops quickly become a favorite snack among dementia patients in the UK, but they were able to provide an additional boost of hydration to hospital workers during the pandemic. In NHS coronavirus hospital wards, patients infected with the virus were regularly given Jelly Drops to keep their fluid levels normal—and staff members snacked on them as well, since long shifts and personal protective equipment (PPE) they were required to wear often left them feeling parched.
In April 2022, Jelly Drops launched in the United States. The company continues to donate 1% of its profits to help fund Alzheimer’s research.