Mind the (Vote) Gap: Can We Get More STEM Students to the Polls?
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
By the numbers, American college students who major in STEM disciplines—science, technology, engineering, and math—aren't big on voting. In fact, recent research suggests they're the least likely group of students to head to the ballot box, even as American political leaders cast doubt on the very kinds of expertise those students are developing on campus.
Worried educators say it's time for a rethink of STEM education at the college level. Armed with success stories and model courses, educators are pushing for colleagues to add relevance to STEM education—and instill a sense of civic duty—by bringing the outside world in.
"It's a matter of what's in the curriculum, how faculty spend their time. There are opportunities to weave [policy] within the curriculum," said Nancy L. Thomas, director of Tufts University's Institute for Democracy & Higher Education.
The most recent student voting numbers come from the 2018 mid-term election, when a national Democratic wave brought voters to the polls. Just over a third of STEM college students surveyed said they voted, the lowest percentage of six subject areas, according to a report from the institute at Tufts. Students in the education, social sciences, and humanities fields had the highest voting rates at 47%, 41%, and 39%, respectively.
Students across the board were much less engaged in the mid-year election of 2014, when just 28% of education students surveyed said they voted. STEM students again stood at the rear, with just 16% voting.
(The report analyzed whether more than 10 million college students at 1,031 U.S. institutions voted in 2014 and 2018. At the request of this magazine, the institute at Tufts removed non-U.S. resident students—who can't vote—from the findings to see if the results changed. Voting rates among STEM students remained among the lowest.)
Why aren't STEM students engaged in politics? "I have no reason to think that science students don't care about public policy issues," Tufts University's Thomas said. Instead, she believes that colleges fail to inspire STEM students to think beyond lectures and homework.
Enter the SENCER project—Science Education for New Civic Engagements and Responsibilities. Since 2001, the project has taught thousands of educators and students how to connect science and citizenship.
The roots of the project go back to 1990, when Rutgers University microbiologist Monica Devanas was assigned to teach a general-education class called "Biomedical Issues of AIDS." She decided to expand the curriculum to encompass insights about a wide range of societal issues. Guest speakers from the community, including a man with a grim diagnosis, talked about the disease and its spread. And Devanas's colleagues in a wide variety of disciplines offered course sections about AIDS and its role in areas such as literature, prisons and law.
"I always tried to make a connection, hoping to create scientifically engaged citizens by explaining the science to them in ways that they could understand."
When she first taught the class, 450 students signed up instead of the expected 100. Devanas, who'd only ever taught a few dozen students with a blackboard, suddenly had to figure out how to teach hundreds at once with the standard technology of the time: an overhead projector.
Devanas, who taught the hugely popular class for the next 18 years, said the course worked because it linked the AIDS epidemic, a hot topic at the time, to the outer world beyond immune cells and test tubes. "You really need to make it very personal and relevant. When you talk about treatment for AIDS or the cost of drugs: Who pays for this?" she said. "I always tried to make a connection, hoping to create scientifically engaged citizens by explaining the science to them in ways that they could understand."
How can other educators learn to create compelling courses? The SENCER website offers dozens of model classes for college and K–12 educators, all with the aim of making STEM classes relevant. An engineering course, for example, could expand a discussion about the nuts and bolts of automated vehicles into a conversation about whether the cars are a good idea in the first place, said Eliza J. Reilly, executive director of the National Center for Science and Civic Engagement, where SENCER is based.
SENCER, which is government-funded, holds regular conferences and has conducted research that supports the effectiveness of its programs. "This is an educational and intellectual project rather than a get-out-the-vote project. It's not intended to create activists. Instead, it's intended to help students understand that they have power as citizens," Reilly said.
What about long-term change? Will inspiring college students to engage with politics turn them into lifetime voters? Reilly said she's not aware of any research into whether STEM students continue to vote at lower levels after they graduate. That means there's no way to know if limited civic engagement in college translates to lifelong apathy. We also don't know if lower voting rates in college may help explain why few people with STEM backgrounds run for higher office.
There's another big unknown: If more people with STEM degrees vote, will they actually support fact-based policies and candidates who listen to science? The answer is not as obvious as it may appear. At Rutgers, professor Devanas pointed to the research of Yale University law/psychology professor Dan Kahan, who found that the most scientifically literate people in the U.S. also happen to be among those most polarized over climate change. In other words, a scientific mind may not necessarily translate to a pro-science vote.
Regardless of the ultimate choices that STEM students make at the ballot box, advocates will keep encouraging educators to connect science to the world beyond the classroom. As Tufts University's Thomas explained, "it just takes a lot of creativity and will."
[Editor's Note: To read other articles in this special magazine issue, visit the beautifully designed e-reader version.]
This man spent over 70 years in an iron lung. What he was able to accomplish is amazing.
It’s a sight we don’t normally see these days: A man lying prone in a big, metal tube with his head sticking out of one end. But it wasn’t so long ago that this sight was unfortunately much more common.
In the first half of the 20th century, tens of thousands of people each year were infected by polio—a highly contagious virus that attacks nerves in the spinal cord and brainstem. Many people survived polio, but a small percentage of people who did were left permanently paralyzed from the virus, requiring support to help them breathe. This support, known as an “iron lung,” manually pulled oxygen in and out of a person’s lungs by changing the pressure inside the machine.
Paul Alexander was one of several thousand who were infected and paralyzed by polio in 1952. That year, a polio epidemic swept the United States, forcing businesses to close and polio wards in hospitals all over the country to fill up with sick children. When Paul caught polio in the summer of 1952, doctors urged his parents to let him rest and recover at home, since the hospital in his home suburb of Dallas, Texas was already overrun with polio patients.
Paul rested in bed for a few days with aching limbs and a fever. But his condition quickly got worse. Within a week, Paul could no longer speak or swallow, and his parents rushed him to the local hospital where the doctors performed an emergency procedure to help him breathe. Paul woke from the surgery three days later, and found himself unable to move and lying inside an iron lung in the polio ward, surrounded by rows of other paralyzed children.
Hospitals were commonly filled with polio patients who had been paralyzed by the virus before a vaccine became widely available in 1955. Associated Press
Paul struggled inside the polio ward for the next 18 months, bored and restless and needing to hold his breath when the nurses opened the iron lung to help him bathe. The doctors on the ward frequently told his parents that Paul was going to die.But against all odds, Paul lived. And with help from a physical therapist, Paul was able to thrive—sometimes for small periods outside the iron lung.
The way Paul did this was to practice glossopharyngeal breathing (or as Paul called it, “frog breathing”), where he would trap air in his mouth and force it down his throat and into his lungs by flattening his tongue. This breathing technique, taught to him by his physical therapist, would allow Paul to leave the iron lung for increasing periods of time.
With help from his iron lung (and for small periods of time without it), Paul managed to live a full, happy, and sometimes record-breaking life. At 21, Paul became the first person in Dallas, Texas to graduate high school without attending class in person, owing his success to memorization rather than taking notes. After high school, Paul received a scholarship to Southern Methodist University and pursued his dream of becoming a trial lawyer and successfully represented clients in court.
Paul Alexander, pictured here in his early 20s, mastered a type of breathing technique that allowed him to spend short amounts of time outside his iron lung. Paul Alexander
Paul practiced law in North Texas for more than 30 years, using a modified wheelchair that held his body upright. During his career, Paul even represented members of the biker gang Hells Angels—and became so close with them he was named an honorary member.Throughout his long life, Paul was also able to fly on a plane, visit the beach, adopt a dog, fall in love, and write a memoir using a plastic stick to tap out a draft on a keyboard. In recent years, Paul joined TikTok and became a viral sensation with more than 330,000 followers. In one of his first videos, Paul advocated for vaccination and warned against another polio epidemic.
Paul was reportedly hospitalized with COVID-19 at the end of February and died on March 11th, 2024. He currently holds the Guiness World Record for longest survival inside an iron lung—71 years.
Polio thankfully no longer circulates in the United States, or in most of the world, thanks to vaccines. But Paul continues to serve as a reminder of the importance of vaccination—and the power of the human spirit.
““I’ve got some big dreams. I’m not going to accept from anybody their limitations,” he said in a 2022 interview with CNN. “My life is incredible.”
When doctors couldn’t stop her daughter’s seizures, this mom earned a PhD and found a treatment herself.
Twenty-eight years ago, Tracy Dixon-Salazaar woke to the sound of her daughter, two-year-old Savannah, in the midst of a medical emergency.
“I entered [Savannah’s room] to see her tiny little body jerking about violently in her bed,” Tracy said in an interview. “I thought she was choking.” When she and her husband frantically called 911, the paramedic told them it was likely that Savannah had had a seizure—a term neither Tracy nor her husband had ever heard before.
Over the next several years, Savannah’s seizures continued and worsened. By age five Savannah was having seizures dozens of times each day, and her parents noticed significant developmental delays. Savannah was unable to use the restroom and functioned more like a toddler than a five-year-old.
Doctors were mystified: Tracy and her husband had no family history of seizures, and there was no event—such as an injury or infection—that could have caused them. Doctors were also confused as to why Savannah’s seizures were happening so frequently despite trying different seizure medications.
Doctors eventually diagnosed Savannah with Lennox-Gaustaut Syndrome, or LGS, an epilepsy disorder with no cure and a poor prognosis. People with LGS are often resistant to several kinds of anti-seizure medications, and often suffer from developmental delays and behavioral problems. People with LGS also have a higher chance of injury as well as a higher chance of sudden unexpected death (SUDEP) due to the frequent seizures. In about 70 percent of cases, LGS has an identifiable cause such as a brain injury or genetic syndrome. In about 30 percent of cases, however, the cause is unknown.
Watching her daughter struggle through repeated seizures was devastating to Tracy and the rest of the family.
“This disease, it comes into your life. It’s uninvited. It’s unannounced and it takes over every aspect of your daily life,” said Tracy in an interview with Today.com. “Plus it’s attacking the thing that is most precious to you—your kid.”
Desperate to find some answers, Tracy began combing the medical literature for information about epilepsy and LGS. She enrolled in college courses to better understand the papers she was reading.
“Ironically, I thought I needed to go to college to take English classes to understand these papers—but soon learned it wasn’t English classes I needed, It was science,” Tracy said. When she took her first college science course, Tracy says, she “fell in love with the subject.”
Tracy was now a caregiver to Savannah, who continued to have hundreds of seizures a month, as well as a full-time student, studying late into the night and while her kids were at school, using classwork as “an outlet for the pain.”
“I couldn’t help my daughter,” Tracy said. “Studying was something I could do.”
Twelve years later, Tracy had earned a PhD in neurobiology.
After her post-doctoral training, Tracy started working at a lab that explored the genetics of epilepsy. Savannah’s doctors hadn’t found a genetic cause for her seizures, so Tracy decided to sequence her genome again to check for other abnormalities—and what she found was life-changing.
Tracy discovered that Savannah had a calcium channel mutation, meaning that too much calcium was passing through Savannah’s neural pathways, leading to seizures. The information made sense to Tracy: Anti-seizure medications often leech calcium from a person’s bones. When doctors had prescribed Savannah calcium supplements in the past to counteract these effects, her seizures had gotten worse every time she took the medication. Tracy took her discovery to Savannah’s doctor, who agreed to prescribe her a calcium blocker.
The change in Savannah was almost immediate.
Within two weeks, Savannah’s seizures had decreased by 95 percent. Once on a daily seven-drug regimen, she was soon weaned to just four, and then three. Amazingly, Tracy started to notice changes in Savannah’s personality and development, too.
“She just exploded in her personality and her talking and her walking and her potty training and oh my gosh she is just so sassy,” Tracy said in an interview.
Since starting the calcium blocker eleven years ago, Savannah has continued to make enormous strides. Though still unable to read or write, Savannah enjoys puzzles and social media. She’s “obsessed” with boys, says Tracy. And while Tracy suspects she’ll never be able to live independently, she and her daughter can now share more “normal” moments—something she never anticipated at the start of Savannah’s journey with LGS. While preparing for an event, Savannah helped Tracy get ready.
“We picked out a dress and it was the first time in our lives that we did something normal as a mother and a daughter,” she said. “It was pretty cool.”