Mind the (Vote) Gap: Can We Get More STEM Students to the Polls?
This article is part of the magazine, "The Future of Science In America: The Election Issue," co-published by LeapsMag, the Aspen Institute Science & Society Program, and GOOD.
By the numbers, American college students who major in STEM disciplines—science, technology, engineering, and math—aren't big on voting. In fact, recent research suggests they're the least likely group of students to head to the ballot box, even as American political leaders cast doubt on the very kinds of expertise those students are developing on campus.
Worried educators say it's time for a rethink of STEM education at the college level. Armed with success stories and model courses, educators are pushing for colleagues to add relevance to STEM education—and instill a sense of civic duty—by bringing the outside world in.
"It's a matter of what's in the curriculum, how faculty spend their time. There are opportunities to weave [policy] within the curriculum," said Nancy L. Thomas, director of Tufts University's Institute for Democracy & Higher Education.
The most recent student voting numbers come from the 2018 mid-term election, when a national Democratic wave brought voters to the polls. Just over a third of STEM college students surveyed said they voted, the lowest percentage of six subject areas, according to a report from the institute at Tufts. Students in the education, social sciences, and humanities fields had the highest voting rates at 47%, 41%, and 39%, respectively.
Students across the board were much less engaged in the mid-year election of 2014, when just 28% of education students surveyed said they voted. STEM students again stood at the rear, with just 16% voting.
(The report analyzed whether more than 10 million college students at 1,031 U.S. institutions voted in 2014 and 2018. At the request of this magazine, the institute at Tufts removed non-U.S. resident students—who can't vote—from the findings to see if the results changed. Voting rates among STEM students remained among the lowest.)
Why aren't STEM students engaged in politics? "I have no reason to think that science students don't care about public policy issues," Tufts University's Thomas said. Instead, she believes that colleges fail to inspire STEM students to think beyond lectures and homework.
Enter the SENCER project—Science Education for New Civic Engagements and Responsibilities. Since 2001, the project has taught thousands of educators and students how to connect science and citizenship.
The roots of the project go back to 1990, when Rutgers University microbiologist Monica Devanas was assigned to teach a general-education class called "Biomedical Issues of AIDS." She decided to expand the curriculum to encompass insights about a wide range of societal issues. Guest speakers from the community, including a man with a grim diagnosis, talked about the disease and its spread. And Devanas's colleagues in a wide variety of disciplines offered course sections about AIDS and its role in areas such as literature, prisons and law.
"I always tried to make a connection, hoping to create scientifically engaged citizens by explaining the science to them in ways that they could understand."
When she first taught the class, 450 students signed up instead of the expected 100. Devanas, who'd only ever taught a few dozen students with a blackboard, suddenly had to figure out how to teach hundreds at once with the standard technology of the time: an overhead projector.
Devanas, who taught the hugely popular class for the next 18 years, said the course worked because it linked the AIDS epidemic, a hot topic at the time, to the outer world beyond immune cells and test tubes. "You really need to make it very personal and relevant. When you talk about treatment for AIDS or the cost of drugs: Who pays for this?" she said. "I always tried to make a connection, hoping to create scientifically engaged citizens by explaining the science to them in ways that they could understand."
How can other educators learn to create compelling courses? The SENCER website offers dozens of model classes for college and K–12 educators, all with the aim of making STEM classes relevant. An engineering course, for example, could expand a discussion about the nuts and bolts of automated vehicles into a conversation about whether the cars are a good idea in the first place, said Eliza J. Reilly, executive director of the National Center for Science and Civic Engagement, where SENCER is based.
SENCER, which is government-funded, holds regular conferences and has conducted research that supports the effectiveness of its programs. "This is an educational and intellectual project rather than a get-out-the-vote project. It's not intended to create activists. Instead, it's intended to help students understand that they have power as citizens," Reilly said.
What about long-term change? Will inspiring college students to engage with politics turn them into lifetime voters? Reilly said she's not aware of any research into whether STEM students continue to vote at lower levels after they graduate. That means there's no way to know if limited civic engagement in college translates to lifelong apathy. We also don't know if lower voting rates in college may help explain why few people with STEM backgrounds run for higher office.
There's another big unknown: If more people with STEM degrees vote, will they actually support fact-based policies and candidates who listen to science? The answer is not as obvious as it may appear. At Rutgers, professor Devanas pointed to the research of Yale University law/psychology professor Dan Kahan, who found that the most scientifically literate people in the U.S. also happen to be among those most polarized over climate change. In other words, a scientific mind may not necessarily translate to a pro-science vote.
Regardless of the ultimate choices that STEM students make at the ballot box, advocates will keep encouraging educators to connect science to the world beyond the classroom. As Tufts University's Thomas explained, "it just takes a lot of creativity and will."
[Editor's Note: To read other articles in this special magazine issue, visit the beautifully designed e-reader version.]
Few things are more painful than a urinary tract infection (UTI). Common in men and women, these infections account for more than 8 million trips to the doctor each year and can cause an array of uncomfortable symptoms, from a burning feeling during urination to fever, vomiting, and chills. For an unlucky few, UTIs can be chronic—meaning that, despite treatment, they just keep coming back.
But new research, presented at the European Association of Urology (EAU) Congress in Paris this week, brings some hope to people who suffer from UTIs.
Clinicians from the Royal Berkshire Hospital presented the results of a long-term, nine-year clinical trial where 89 men and women who suffered from recurrent UTIs were given an oral vaccine called MV140, designed to prevent the infections. Every day for three months, the participants were given two sprays of the vaccine (flavored to taste like pineapple) and then followed over the course of nine years. Clinicians analyzed medical records and asked the study participants about symptoms to check whether any experienced UTIs or had any adverse reactions from taking the vaccine.
The results showed that across nine years, 48 of the participants (about 54%) remained completely infection-free. On average, the study participants remained infection free for 54.7 months—four and a half years.
“While we need to be pragmatic, this vaccine is a potential breakthrough in preventing UTIs and could offer a safe and effective alternative to conventional treatments,” said Gernot Bonita, Professor of Urology at the Alta Bro Medical Centre for Urology in Switzerland, who is also the EAU Chairman of Guidelines on Urological Infections.
The news comes as a relief not only for people who suffer chronic UTIs, but also to doctors who have seen an uptick in antibiotic-resistant UTIs in the past several years. Because UTIs usually require antibiotics, patients run the risk of developing a resistance to the antibiotics, making infections more difficult to treat. A preventative vaccine could mean less infections, less antibiotics, and less drug resistance overall.
“Many of our participants told us that having the vaccine restored their quality of life,” said Dr. Bob Yang, Consultant Urologist at the Royal Berkshire NHS Foundation Trust, who helped lead the research. “While we’re yet to look at the effect of this vaccine in different patient groups, this follow-up data suggests it could be a game-changer for UTI prevention if it’s offered widely, reducing the need for antibiotic treatments.”
MILESTONE: Doctors have transplanted a pig organ into a human for the first time in history
Surgeons at Massachusetts General Hospital made history last week when they successfully transplanted a pig kidney into a human patient for the first time ever.
The recipient was a 62-year-old man named Richard Slayman who had been living with end-stage kidney disease caused by diabetes. While Slayman had received a kidney transplant in 2018 from a human donor, his diabetes ultimately caused the kidney to fail less than five years after the transplant. Slayman had undergone dialysis ever since—a procedure that uses an artificial kidney to remove waste products from a person’s blood when the kidneys are unable to—but the dialysis frequently caused blood clots and other complications that landed him in the hospital multiple times.
As a last resort, Slayman’s kidney specialist suggested a transplant using a pig kidney provided by eGenesis, a pharmaceutical company based in Cambridge, Mass. The highly experimental surgery was made possible with the Food and Drug Administration’s “compassionate use” initiative, which allows patients with life-threatening medical conditions access to experimental treatments.
The new frontier of organ donation
Like Slayman, more than 100,000 people are currently on the national organ transplant waiting list, and roughly 17 people die every day waiting for an available organ. To make up for the shortage of human organs, scientists have been experimenting for the past several decades with using organs from animals such as pigs—a new field of medicine known as xenotransplantation. But putting an animal organ into a human body is much more complicated than it might appear, experts say.
“The human immune system reacts incredibly violently to a pig organ, much more so than a human organ,” said Dr. Joren Madsen, director of the Mass General Transplant Center. Even with immunosuppressant drugs that suppress the body’s ability to reject the transplant organ, Madsen said, a human body would reject an animal organ “within minutes.”
So scientists have had to use gene-editing technology to change the animal organs so that they would work inside a human body. The pig kidney in Slayman’s surgery, for instance, had been genetically altered using CRISPR-Cas9 technology to remove harmful pig genes and add human ones. The kidney was also edited to remove pig viruses that could potentially infect a human after transplant.
With CRISPR technology, scientists have been able to prove that interspecies organ transplants are not only possible, but may be able to successfully work long term, too. In the past several years, scientists were able to transplant a pig kidney into a monkey and have the monkey survive for more than two years. More recently, doctors have transplanted pig hearts into human beings—though each recipient of a pig heart only managed to live a couple of months after the transplant. In one of the patients, researchers noted evidence of a pig virus in the man’s heart that had not been identified before the surgery and could be a possible explanation for his heart failure.
So far, so good
Slayman and his medical team ultimately decided to pursue the surgery—and the risk paid off. When the pig organ started producing urine at the end of the four-hour surgery, the entire operating room erupted in applause.
Slayman is currently receiving an infusion of immunosuppressant drugs to prevent the kidney from being rejected, while his doctors monitor the kidney’s function with frequent ultrasounds. Slayman is reported to be “recovering well” at Massachusetts General Hospital and is expected to be discharged within the next several days.