More Progress, Faster, Is Our Best Defense Against This Pandemic and Future Ones
With a deadly pandemic sweeping the planet, many are questioning the comfort and security we have taken for granted in the modern world.
A century ago, when an influenza pandemic struck, we barely knew what viruses were.
More than a century after the germ theory, we are still at the mercy of a microbe we can neither treat, nor control, nor immunize against. Even more discouraging is that technology has in some ways exacerbated the problem: cars and air travel allow a new disease to quickly encompass the globe.
Some say we have grown complacent, that we falsely assume the triumphs of the past ensure a happy and prosperous future, that we are oblivious to the possibility of unpredictable "black swan" events that could cause our destruction. Some have begun to lose confidence in progress itself, and despair of the future.
But the new coronavirus should not defeat our spirit—if anything, it should spur us to redouble our efforts, both in the science and technology of medicine, and more broadly in the advance of industry. Because the best way to protect ourselves against future disasters is more progress, faster.
Science and technology have overall made us much better able to deal with disease. In the developed world, we have already tamed most categories of infectious disease. Most bacterial infections, such as tuberculosis or bacterial pneumonia, are cured with antibiotics. Waterborne diseases such as cholera are eliminated through sanitation; insect-borne ones such as malaria through pest control. Those that are not contagious until symptoms appear, such as SARS, can be handled through case isolation and contact tracing. For the rest, such as smallpox, polio, and measles, we develop vaccines, given enough time. COVID-19 could start a pandemic only because it fits a narrow category: a new, viral disease that is highly contagious via pre-symptomatic droplet/aerosol transmission, and that has a high mortality rate compared to seasonal influenza.
A century ago, when an influenza pandemic struck, we barely knew what viruses were; no one had ever seen one. Today we know what COVID-19 is down to its exact genome; in fact, we have sequenced thousands of COVID-19 genomes, and can track its history and its spread through their mutations. We can create vaccines faster today, too: where we once developed them in live animals, we now use cell cultures; where we once had to weaken or inactivate the virus itself, we can now produce vaccines based on the virus's proteins. And even though we don't yet have a treatment, the last century-plus of pharmaceutical research has given us a vast catalog of candidate drugs, already proven safe. Even now, over 50 candidate vaccines and almost 100 candidate treatments are in the research pipeline.
It's not just our knowledge that has advanced, but our methods. When smallpox raged in the 1700s, even the idea of calculating a case-fatality rate was an innovation. When the polio vaccine was trialled in the 1950s, the use of placebo-controlled trials was still controversial. The crucial measure of contagiousness, "R0", was not developed in epidemiology until the 1980s. And today, all of these methods are made orders of magnitude faster and more powerful by statistical and data visualization software.
If you're seeking to avoid COVID-19, the hand sanitizer gel you carry in a pocket or purse did not exist until the 1960s. If you start to show symptoms, the pulse oximeter that tests your blood oxygenation was not developed until the 1970s. If your case worsens, the mechanical ventilator that keeps you alive was invented in the 1950s—in fact, no form of artificial respiration was widely available until the "iron lung" used to treat polio patients in the 1930s. Even the modern emergency medical system did not exist until recently: if during the 1918 flu pandemic you became seriously ill, there was no 911 hotline to call, and any ambulance that showed up would likely have been a modified van or hearse, with no equipment or trained staff.
As many of us "shelter in place", we are far more able to communicate and collaborate, to maintain some semblance of normal life, than we ever would have been. To compare again to 1918: long-distance telephone service barely existed at that time, and only about a third of homes in the US even had electricity; now we can videoconference over Zoom and Skype. And the enormous selection and availability provided by online retail and food delivery have kept us stocked and fed, even when we don't want to venture out to the store.
Let the virus push us to redouble our efforts to make scientific, technological, and industrial progress on all fronts.
"Black swan" calamities can strike without warning at any time. Indeed, humanity has always been subject to them—drought and frost, fire and flood, war and plague. But we are better equipped now to deal with them than ever before. And the more progress we make, the better prepared we'll be for the next one. The accumulation of knowledge, technology, industrial infrastructure, and surplus wealth is the best buffer against any shock—whether a viral pandemic, a nuclear war, or an asteroid impact. In fact, the more worried we are about future crises, the more energetically we should accelerate science, technology and industry.
In this sense, we have grown complacent. We take the modern world for granted, so much so that some question whether further progress is even still needed. The new virus proves how much we do need it, and how far we still have to go. Imagine how different things would be if we had broad-spectrum antiviral drugs, or a way to enhance the immune system to react faster to infection, or a way to detect infection even before symptoms appear. These technologies may seem to belong to a Star Trek future—but so, at one time, did cell phones.
The virus reminds us that nature is indifferent to us, leaving us to fend entirely for ourselves. As we go to war against it, let us not take the need for such a war as reason for despair. Instead, let it push us to redouble our efforts to make scientific, technological, and industrial progress on all fronts. No matter the odds, applied intelligence is our best weapon against disaster.
Scientists experiment with burning iron as a fuel source
Story by Freethink
Try burning an iron metal ingot and you’ll have to wait a long time — but grind it into a powder and it will readily burst into flames. That’s how sparklers work: metal dust burning in a beautiful display of light and heat. But could we burn iron for more than fun? Could this simple material become a cheap, clean, carbon-free fuel?
In new experiments — conducted on rockets, in microgravity — Canadian and Dutch researchers are looking at ways of boosting the efficiency of burning iron, with a view to turning this abundant material — the fourth most common in the Earth’s crust, about about 5% of its mass — into an alternative energy source.
Iron as a fuel
Iron is abundantly available and cheap. More importantly, the byproduct of burning iron is rust (iron oxide), a solid material that is easy to collect and recycle. Neither burning iron nor converting its oxide back produces any carbon in the process.
Iron oxide is potentially renewable by reacting with electricity or hydrogen to become iron again.
Iron has a high energy density: it requires almost the same volume as gasoline to produce the same amount of energy. However, iron has poor specific energy: it’s a lot heavier than gas to produce the same amount of energy. (Think of picking up a jug of gasoline, and then imagine trying to pick up a similar sized chunk of iron.) Therefore, its weight is prohibitive for many applications. Burning iron to run a car isn’t very practical if the iron fuel weighs as much as the car itself.
In its powdered form, however, iron offers more promise as a high-density energy carrier or storage system. Iron-burning furnaces could provide direct heat for industry, home heating, or to generate electricity.
Plus, iron oxide is potentially renewable by reacting with electricity or hydrogen to become iron again (as long as you’ve got a source of clean electricity or green hydrogen). When there’s excess electricity available from renewables like solar and wind, for example, rust could be converted back into iron powder, and then burned on demand to release that energy again.
However, these methods of recycling rust are very energy intensive and inefficient, currently, so improvements to the efficiency of burning iron itself may be crucial to making such a circular system viable.
The science of discrete burning
Powdered particles have a high surface area to volume ratio, which means it is easier to ignite them. This is true for metals as well.
Under the right circumstances, powdered iron can burn in a manner known as discrete burning. In its most ideal form, the flame completely consumes one particle before the heat radiating from it combusts other particles in its vicinity. By studying this process, researchers can better understand and model how iron combusts, allowing them to design better iron-burning furnaces.
Discrete burning is difficult to achieve on Earth. Perfect discrete burning requires a specific particle density and oxygen concentration. When the particles are too close and compacted, the fire jumps to neighboring particles before fully consuming a particle, resulting in a more chaotic and less controlled burn.
Presently, the rate at which powdered iron particles burn or how they release heat in different conditions is poorly understood. This hinders the development of technologies to efficiently utilize iron as a large-scale fuel.
Burning metal in microgravity
In April, the European Space Agency (ESA) launched a suborbital “sounding” rocket, carrying three experimental setups. As the rocket traced its parabolic trajectory through the atmosphere, the experiments got a few minutes in free fall, simulating microgravity.
One of the experiments on this mission studied how iron powder burns in the absence of gravity.
In microgravity, particles float in a more uniformly distributed cloud. This allows researchers to model the flow of iron particles and how a flame propagates through a cloud of iron particles in different oxygen concentrations.
Existing fossil fuel power plants could potentially be retrofitted to run on iron fuel.
Insights into how flames propagate through iron powder under different conditions could help design much more efficient iron-burning furnaces.
Clean and carbon-free energy on Earth
Various businesses are looking at ways to incorporate iron fuels into their processes. In particular, it could serve as a cleaner way to supply industrial heat by burning iron to heat water.
For example, Dutch brewery Swinkels Family Brewers, in collaboration with the Eindhoven University of Technology, switched to iron fuel as the heat source to power its brewing process, accounting for 15 million glasses of beer annually. Dutch startup RIFT is running proof-of-concept iron fuel power plants in Helmond and Arnhem.
As researchers continue to improve the efficiency of burning iron, its applicability will extend to other use cases as well. But is the infrastructure in place for this transition?
Often, the transition to new energy sources is slowed by the need to create new infrastructure to utilize them. Fortunately, this isn’t the case with switching from fossil fuels to iron. Since the ideal temperature to burn iron is similar to that for hydrocarbons, existing fossil fuel power plants could potentially be retrofitted to run on iron fuel.
This article originally appeared on Freethink, home of the brightest minds and biggest ideas of all time.
How to Use Thoughts to Control Computers with Dr. Tom Oxley
Tom Oxley is building what he calls a “natural highway into the brain” that lets people use their minds to control their phones and computers. The device, called the Stentrode, could improve the lives of hundreds of thousands of people living with spinal cord paralysis, ALS and other neurodegenerative diseases.
Leaps.org talked with Dr. Oxley for today’s podcast. A fascinating thing about the Stentrode is that it works very differently from other “brain computer interfaces” you may be familiar with, like Elon Musk’s Neuralink. Some BCIs are implanted by surgeons directly into a person’s brain, but the Stentrode is much less invasive. Dr. Oxley’s company, Synchron, opts for a “natural” approach, using stents in blood vessels to access the brain. This offers some major advantages to the handful of people who’ve already started to use the Stentrode.
The audio improves about 10 minutes into the episode. (There was a minor headset issue early on, but everything is audible throughout.) Dr. Oxley’s work creates game-changing opportunities for patients desperate for new options. His take on where we're headed with BCIs is must listening for anyone who cares about the future of health and technology.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
In our conversation, Dr. Oxley talks about “Bluetooth brain”; the critical role of AI in the present and future of BCIs; how BCIs compare to voice command technology; regulatory frameworks for revolutionary technologies; specific people with paralysis who’ve been able to regain some independence thanks to the Stentrode; what it means to be a neurointerventionist; how to scale BCIs for more people to use them; the risks of BCIs malfunctioning; organic implants; and how BCIs help us understand the brain, among other topics.
Dr. Oxley received his PhD in neuro engineering from the University of Melbourne in Australia. He is the founding CEO of Synchron and an associate professor and the head of the vascular bionics laboratory at the University of Melbourne. He’s also a clinical instructor in the Deepartment of Neurosurgery at Mount Sinai Hospital. Dr. Oxley has completed more than 1,600 endovascular neurosurgical procedures on patients, including people with aneurysms and strokes, and has authored over 100 peer reviewed articles.
Links:
Synchron website - https://synchron.com/
Assessment of Safety of a Fully Implanted Endovascular Brain-Computer Interface for Severe Paralysis in 4 Patients (paper co-authored by Tom Oxley) - https://jamanetwork.com/journals/jamaneurology/art...
More research related to Synchron's work - https://synchron.com/research
Tom Oxley on LinkedIn - https://www.linkedin.com/in/tomoxl
Tom Oxley on Twitter - https://twitter.com/tomoxl?lang=en
Tom Oxley TED - https://www.ted.com/talks/tom_oxley_a_brain_implant_that_turns_your_thoughts_into_text?language=en
Tom Oxley website - https://tomoxl.com/
Novel brain implant helps paralyzed woman speak using digital avatar - https://engineering.berkeley.edu/news/2023/08/novel-brain-implant-helps-paralyzed-woman-speak-using-a-digital-avatar/
Edward Chang lab - https://changlab.ucsf.edu/
BCIs convert brain activity into text at 62 words per minute - https://med.stanford.edu/neurosurgery/news/2023/he...
Leaps.org: The Mind-Blowing Promise of Neural Implants - https://leaps.org/the-mind-blowing-promise-of-neural-implants/
Tom Oxley