Move Over, Iron Man. A Real-Life Power Suit Helped This Paralyzed Grandmother Learn to Run.
Puschel Sorensen first noticed something was wrong when her fingertips began to tingle. Later that day, she grew weak and fell.
It picked up small electrical impulses on her skin's surface and turned them into full movement in her legs.
Her family rushed her to the doctor, where she received the devastating diagnosis of Guillain-Barré Syndrome -- a rare and rapidly progressing autoimmune disorder that attacks the myelin sheath covering nerves.
Sorensen, a once-spry grandmother in her late fifties, spent 54 days in intensive care in 2018. When she was finally transferred to a rehab facility near her home in Florida, she was still on a feeding tube and ventilator, and was paralyzed from the neck down. Progress with traditional physical therapy was slow.
Sorensen in the hospital after her diagnosis of Guillain-Barré syndrome.
And then everything changed. Sorensen began using a cutting-edge technology called an exoskeleton to relearn how to walk. In the vein of Iron Man's fictional power suit, it confers strength and mobility to the wearer that isn't possible otherwise. In Sorensen's case, her device, called HAL – for hybrid assistive limb -- picked up small electrical impulses on her skin's surface and turned them into full movement in her legs while she attempted to walk on a treadmill.
"It was very difficult, but super awesome," recalls Sorensen, of first using the device. "The robot was having to do all the work for me."
Amazingly, within a year, she was running. She's one of 38 patients who have used HAL to recover from accidents or medical catastrophes.
Cyberdyne's hybrid assistive limb technology.
"How do you thank someone for giving them back the ability to walk, the ability to live your life again?" Sorensen asks effusively.
It's still early days for such exoskeleton devices, which number perhaps a few thousand worldwide, according to data from the handful of manufacturers who create them with any scale. But the devices' ability to dramatically rehabilitate patients like Sorensen highlights their potential to extract untold numbers of people from wheelchairs, and even to usher in a new paradigm for caregiving – one of the fastest growing segments of the U.S. economy.
"I've been a physical therapist for 16 years, and (these devices) help teach patients the right way to move in rehabilitation," says Robert McIver, director of clinical technology at the Brooks Cybernic Treatment Center, part of the Brooks Rehabilitation Hospital in Jacksonville, Fla, where Sorensen recovered.
Another patient there, a 17-year-old named George with a snowboarding injury that paralyzed his legs, was getting around with a walker within 20 sessions.
As patients progress in their recoveries, so does exoskeleton technology. Jack Peurach, CEO of Ekso, one of the leaders in the space, believes within a decade they could resemble an article of clothing (a "magic pair of pants" is his phrase). They also may become inexpensive and reliable enough to transition from a medical to a consumer device. McIver sees them eventually being used in the home on an ongoing basis as a personal assistive device, much like a walker or cane, to prevent falls in elderly people.
Such a transition "certainly could eventually lessen the need for caregivers," says Sharona Hoffman, a professor of law at Case Western University in Cleveland who has written extensively on aging and bioethics. "We have a real shortage of caregivers, so that would be a good thing."
Of course, having an aging and disabled population using exoskeletons in much the same way as an Apple Watch raises issues of its own.
Dr. Elizabeth Landsverk, a California-based geriatrician and founder of a company that performs house calls for elderly patients, believes the tech holds some promise in easing the burden on caregivers, who sometimes have to lift or move patients without assistance. But she also believes exoskeletons could become overhyped.
"I don't see robotics as completely replacing the caregiver," she says. And even if exoskeletons became akin to articles of clothing, she is skeptical of how convenient they could become.
"It's hard enough to get into support hose. Would an older person be able to get in and out of it on their own?" she asks, noting that a patient's cognitive levels could pose a huge barrier to donning such a device without assistance.
If personal exoskeletons did wildly succeed, Hoffman wonders whether they would leave the elderly more physically mobile yet also more socially isolated, since caregivers or even residing in an assisted living facility may no longer be required. Or, if they were priced in the hundreds or thousands of dollars, he worries that the cost would exacerbate social inequalities among the elderly and disabled.
"It's almost like a bad dream that [my illness] happened."
With any technology that confers superhuman ability, there's also the question of appropriate usage. Even the fictional Power Loader in the movie Alien required an operator's license. In the real world, such an approach would likely pay dividends.
"We would have to make sure physicians are well-trained in these devices, and patients have a way of getting training to operate them that is thorough and responsible," Hoffman says.
But despite some unresolved questions, it is a remarkable achievement to be able to give people back their lives thanks to new technology.
"It's almost like a bad dream that [my illness] happened," says Sorensen, who managed to walk in her daughter's wedding after her recovery. "Because now everything is pretty much back to normal and it's awesome."
If you were one of the millions who masked up, washed your hands thoroughly and socially distanced, pat yourself on the back—you may have helped change the course of human history.
Scientists say that thanks to these safety precautions, which were introduced in early 2020 as a way to stop transmission of the novel COVID-19 virus, a strain of influenza has been completely eliminated. This marks the first time in human history that a virus has been wiped out through non-pharmaceutical interventions, such as vaccines.
The flu shot, explained
Influenza viruses type A and B are responsible for the majority of human illnesses and the flu season.
Centers for Disease Control
For more than a decade, flu shots have protected against two types of the influenza virus–type A and type B. While there are four different strains of influenza in existence (A, B, C, and D), only strains A, B, and C are capable of infecting humans, and only A and B cause pandemics. In other words, if you catch the flu during flu season, you’re most likely sick with flu type A or B.
Flu vaccines contain inactivated—or dead—influenza virus. These inactivated viruses can’t cause sickness in humans, but when administered as part of a vaccine, they teach a person’s immune system to recognize and kill those viruses when they’re encountered in the wild.
Each spring, a panel of experts gives a recommendation to the US Food and Drug Administration on which strains of each flu type to include in that year’s flu vaccine, depending on what surveillance data says is circulating and what they believe is likely to cause the most illness during the upcoming flu season. For the past decade, Americans have had access to vaccines that provide protection against two strains of influenza A and two lineages of influenza B, known as the Victoria lineage and the Yamagata lineage. But this year, the seasonal flu shot won’t include the Yamagata strain, because the Yamagata strain is no longer circulating among humans.
How Yamagata Disappeared
Flu surveillance data from the Global Initiative on Sharing All Influenza Data (GISAID) shows that the Yamagata lineage of flu type B has not been sequenced since April 2020.
Nature
Experts believe that the Yamagata lineage had already been in decline before the pandemic hit, likely because the strain was naturally less capable of infecting large numbers of people compared to the other strains. When the COVID-19 pandemic hit, the resulting safety precautions such as social distancing, isolating, hand-washing, and masking were enough to drive the virus into extinction completely.
Because the strain hasn’t been circulating since 2020, the FDA elected to remove the Yamagata strain from the seasonal flu vaccine. This will mark the first time since 2012 that the annual flu shot will be trivalent (three-component) rather than quadrivalent (four-component).
Should I still get the flu shot?
The flu shot will protect against fewer strains this year—but that doesn’t mean we should skip it. Influenza places a substantial health burden on the United States every year, responsible for hundreds of thousands of hospitalizations and tens of thousands of deaths. The flu shot has been shown to prevent millions of illnesses each year (more than six million during the 2022-2023 season). And while it’s still possible to catch the flu after getting the flu shot, studies show that people are far less likely to be hospitalized or die when they’re vaccinated.
Another unexpected benefit of dropping the Yamagata strain from the seasonal vaccine? This will possibly make production of the flu vaccine faster, and enable manufacturers to make more vaccines, helping countries who have a flu vaccine shortage and potentially saving millions more lives.
After his grandmother’s dementia diagnosis, one man invented a snack to keep her healthy and hydrated.
On a visit to his grandmother’s nursing home in 2016, college student Lewis Hornby made a shocking discovery: Dehydration is a common (and dangerous) problem among seniors—especially those that are diagnosed with dementia.
Hornby’s grandmother, Pat, had always had difficulty keeping up her water intake as she got older, a common issue with seniors. As we age, our body composition changes, and we naturally hold less water than younger adults or children, so it’s easier to become dehydrated quickly if those fluids aren’t replenished. What’s more, our thirst signals diminish naturally as we age as well—meaning our body is not as good as it once was in letting us know that we need to rehydrate. This often creates a perfect storm that commonly leads to dehydration. In Pat’s case, her dehydration was so severe she nearly died.
When Lewis Hornby visited his grandmother at her nursing home afterward, he learned that dehydration especially affects people with dementia, as they often don’t feel thirst cues at all, or may not recognize how to use cups correctly. But while dementia patients often don’t remember to drink water, it seemed to Hornby that they had less problem remembering to eat, particularly candy.
Where people with dementia often forget to drink water, they're more likely to pick up a colorful snack, Hornby found. alzheimers.org.uk
Hornby wanted to create a solution for elderly people who struggled keeping their fluid intake up. He spent the next eighteen months researching and designing a solution and securing funding for his project. In 2019, Hornby won a sizable grant from the Alzheimer’s Society, a UK-based care and research charity for people with dementia and their caregivers. Together, through the charity’s Accelerator Program, they created a bite-sized, sugar-free, edible jelly drop that looked and tasted like candy. The candy, called Jelly Drops, contained 95% water and electrolytes—important minerals that are often lost during dehydration. The final product launched in 2020—and was an immediate success. The drops were able to provide extra hydration to the elderly, as well as help keep dementia patients safe, since dehydration commonly leads to confusion, hospitalization, and sometimes even death.
Not only did Jelly Drops quickly become a favorite snack among dementia patients in the UK, but they were able to provide an additional boost of hydration to hospital workers during the pandemic. In NHS coronavirus hospital wards, patients infected with the virus were regularly given Jelly Drops to keep their fluid levels normal—and staff members snacked on them as well, since long shifts and personal protective equipment (PPE) they were required to wear often left them feeling parched.
In April 2022, Jelly Drops launched in the United States. The company continues to donate 1% of its profits to help fund Alzheimer’s research.