Indigenous wisdom plus honeypot ants could provide new antibiotics
Lina Zeldovich has written about science, medicine and technology for Popular Science, Smithsonian, National Geographic, Scientific American, Reader’s Digest, the New York Times and other major national and international publications. A Columbia J-School alumna, she has won several awards for her stories, including the ASJA Crisis Coverage Award for Covid reporting, and has been a contributing editor at Nautilus Magazine. In 2021, Zeldovich released her first book, The Other Dark Matter, published by the University of Chicago Press, about the science and business of turning waste into wealth and health. You can find her on http://linazeldovich.com/ and @linazeldovich.
For generations, the Indigenous Tjupan people of Australia enjoyed the sweet treat of honey made by honeypot ants. As a favorite pastime, entire families would go searching for the underground colonies, first spotting a worker ant and then tracing it to its home. The ants, which belong to the species called Camponotus inflatus, usually build their subterranean homes near the mulga trees, Acacia aneura. Having traced an ant to its tree, it would be the women who carefully dug a pit next to a colony, cautious not to destroy the entire structure. Once the ant chambers were exposed, the women would harvest a small amount to avoid devastating the colony’s stocks—and the family would share the treat.
The Tjupan people also knew that the honey had antimicrobial properties. “You could use it for a sore throat,” says Danny Ulrich, a member of the Tjupan nation. “You could also use it topically, on cuts and things like that.”
These hunts have become rarer, as many of the Tjupan people have moved away and, up until now, the exact antimicrobial properties of the ant honey remained unknown. But recently, scientists Andrew Dong and Kenya Fernandes from the University of Sydney, joined Ulrich, who runs the Honeypot Ants tours in Kalgoorlie, a city in Western Australia, on a honey-gathering expedition. Afterwards, they ran a series of experiments analyzing the honey’s antimicrobial activity—and confirmed that the Indigenous wisdom was true. The honey was effective against Staphylococcus aureus, a common pathogen responsible for sore throats, skin infections like boils and sores, and also sepsis, which can result in death. Moreover, the honey also worked against two species of fungi, Cryptococcus and Aspergillus, which can be pathogenic to humans, especially those with suppressed immune systems.
In the era of growing antibiotic resistance and the rising threat of pathogenic fungi, these findings may help scientists identify and make new antimicrobial compounds. “Natural products have been honed over thousands and millions of years by nature and evolution,” says Fernandes. “And some of them have complex and intricate properties that make them really important as potential new antibiotics. “
In an era of growing resistance to antibiotics and new threats of fungi infections, the latest findings about honeypot ants are helping scientists identify new antimicrobial drugs.
Danny Ulrich
Bee honey is also known for its antimicrobial properties, but bees produce it very differently than the ants. Bees collect nectar from flowers, which they regurgitate at the hive and pack into the hexagonal honeycombs they build for storage. As they do so, they also add into the mix an enzyme called glucose oxidase produced by their glands. The enzyme converts atmospheric oxygen into hydrogen peroxide, a reactive molecule that destroys bacteria and acts as a natural preservative. After the bees pack the honey into the honeycombs, they fan it with their wings to evaporate the water. Once a honeycomb is full, the bees put a beeswax cover on it, where it stays well-preserved thanks to the enzymatic action, until the bees need it.
Less is known about the chemistry of ants’ honey-making. Similarly to bees, they collect nectar. They also collect the sweet sap of the mulga tree. Additionally, they also “milk” the aphids—small sap-sucking insects that live on the tree. When ants tickle the aphids with their antennae, the latter release a sweet substance, which the former also transfer to their colonies. That’s where the honey management difference becomes really pronounced. The ants don’t build any kind of structures to store their honey. Instead, they store it in themselves.
The workers feed their harvest to their fellow ants called repletes, stuffing them up to the point that their swollen bellies outgrow the ants themselves, looking like amber-colored honeypots—hence the name. Because of their size, repletes don’t move, but hang down from the chamber’s ceiling, acting as living feedstocks. When food becomes scarce, they regurgitate their reserves to their colony’s brethren. It’s not clear whether the repletes die afterwards or can be restuffed again. “That's a good question,” Dong says. “After they've been stretched, they can't really return to exactly the same shape.”
These replete ants are the “treat” the Tjupan women dug for. Once they saw the round-belly ants inside the chambers, they would reach in carefully and get a few scoops of them. “You see a lot of honeypot ants just hanging on the roof of the little openings,” says Ulrich’s mother, Edie Ulrich. The women would share the ants with family members who would eat them one by one. “They're very delicate,” shares Edie Ulrich—you have to take them out carefully, so they don’t accidentally pop and become a wasted resource. “Because you’d lose all this precious honey.”
Dong stumbled upon the honeypot ants phenomenon because he was interested in Indigenous foods and went on Ulrich’s tour. He quickly became fascinated with the insects and their role in the Indigenous culture. “The honeypot ants are culturally revered by the Indigenous people,” he says. Eventually he decided to test out the honey’s medicinal qualities.
The researchers were surprised to see that even the smallest, eight percent concentration of honey was able to arrest the growth of S. aureus.
To do this, the two scientists first diluted the ant honey with water. “We used something called doubling dilutions, which means that we made 32 percent dilutions, and then we halve that to 16 percent and then we half that to eight percent,” explains Fernandes. The goal was to obtain as much results as possible with the meager honey they had. “We had very, very little of the honeypot ant honey so we wanted to maximize the spectrum of results we can get without wasting too much of the sample.”
After that, the researchers grew different microbes inside a nutrient rich broth. They added the broth to the different honey dilutions and incubated the mixes for a day or two at the temperature favorable to the germs’ growth. If the resulting solution turned turbid, it was a sign that the bugs proliferated. If it stayed clear, it meant that the honey destroyed them. The researchers were surprised to see that even the smallest, eight percent concentration of honey was able to arrest the growth of S. aureus. “It was really quite amazing,” Fernandes says. “Eight milliliters of honey in 92 milliliters of water is a really tiny amount of honey compared to the amount of water.”
Similar to bee honey, the ants’ honey exhibited some peroxide antimicrobial activity, researchers found, but given how little peroxide was in the solution, they think the honey also kills germs by a different mechanism. “When we measured, we found that [the solution] did have some hydrogen peroxide, but it didn't have as much of it as we would expect based on how active it was,” Fernandes says. “Whether this hydrogen peroxide also comes from glucose oxidase or whether it's produced by another source, we don't really know,” she adds. The research team does have some hypotheses about the identity of this other germ-killing agent. “We think it is most likely some kind of antimicrobial peptide that is actually coming from the ant itself.”
The honey also has a very strong activity against the two types of fungi, Cryptococcus and Aspergillus. Both fungi are associated with trees and decaying leaves, as well as in the soils where ants live, so the insects likely have evolved some natural defense compounds, which end up inside the honey.
It wouldn’t be the first time when modern medicines take their origin from the natural world or from the indigenous people’s knowledge. The bark of the cinchona tree native to South America contains quinine, a substance that treats malaria. The Indigenous people of the Andes used the bark to quell fever and chills for generations, and when Europeans began to fall ill with malaria in the Amazon rainforest, they learned to use that medicine from the Andean people.
The wonder drug aspirin similarly takes its origin from a bark of a tree—in this case a willow.
Even some anticancer compounds originated from nature. A chemotherapy drug called Paclitaxel, was originally extracted from the Pacific yew trees, Taxus brevifolia. The samples of the Pacific yew bark were first collected in 1962 by researchers from the United States Department of Agriculture who were looking for natural compounds that might have anti-tumor activity. In December 1992, the FDA approved Paclitaxel (brand name Taxol) for the treatment of ovarian cancer and two years later for breast cancer.
In the era when the world is struggling to find new medicines fast enough to subvert a fungal or bacterial pandemic, these discoveries can pave the way to new therapeutics. “I think it's really important to listen to indigenous cultures and to take their knowledge because they have been using these sources for a really, really long time,” Fernandes says. Now we know it works, so science can elucidate the molecular mechanisms behind it, she adds. “And maybe it can even provide a lead for us to develop some kind of new treatments in the future.”
Lina Zeldovich has written about science, medicine and technology for Popular Science, Smithsonian, National Geographic, Scientific American, Reader’s Digest, the New York Times and other major national and international publications. A Columbia J-School alumna, she has won several awards for her stories, including the ASJA Crisis Coverage Award for Covid reporting, and has been a contributing editor at Nautilus Magazine. In 2021, Zeldovich released her first book, The Other Dark Matter, published by the University of Chicago Press, about the science and business of turning waste into wealth and health. You can find her on http://linazeldovich.com/ and @linazeldovich.
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on new scientific theories and progress to give you a therapeutic dose of inspiration headed into the weekend.
This episode includes an interview with Dr. Helen Keyes, Head of the School of Psychology and Sports Science at Anglia Ruskin University.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
- Attending sports events is linked to greater life satisfaction
- Identifying specific brain tumors in under 90 seconds with AI
- LSD - minus hallucinations - raises hopes for mental health
- New research on the benefits of cold showers
- Inspire awe in your kids and reap the benefits
The rise of remote work is a win-win for people with disabilities and employers
Disability advocates see remote work as a silver lining of the pandemic, a win-win for adults with disabilities and the business world alike.
Any corporate leader would jump at the opportunity to increase their talent pool of potential employees by 15 percent, with all these new hires belonging to an underrepresented minority. That’s especially true given tight labor markets and CEO desires to increase headcount. Yet, too few leaders realize that people with disabilities are the largest minority group in this country, numbering 50 million.
Some executives may dread the extra investments in accommodating people’s disabilities. Yet, providing full-time remote work could suffice, according to a new study by the Economic Innovation Group think tank. The authors found that the employment rate for people with disabilities did not simply reach the pre-pandemic level by mid-2022, but far surpassed it, to the highest rate in over a decade. “Remote work and a strong labor market are helping [individuals with disabilities] find work,” said Adam Ozimek, who led the research and is chief economist at the Economic Innovation Group.
Disability advocates see this development as a silver lining of the pandemic, a win-win for adults with disabilities and the business world alike. For decades before the pandemic, employers had refused requests from workers with disabilities to work remotely, according to Thomas Foley, executive director of the National Disability Institute. During the pandemic, "we all realized that...many of us could work remotely,” Foley says. “[T]hat was disproportionately positive for people with disabilities."
Charles-Edouard Catherine, director of corporate and government relations for the National Organization on Disability, said that remote-work options had been advocated for many years to accommodate disabilities. “It’s a little frustrating that for decades corporate America was saying it’s too complicated, we’ll lose productivity, and now suddenly it’s like, sure, let’s do it.”
The pandemic opened doors for people with disabilities
Early in the pandemic, employment rates dropped for everyone, including people with disabilities, according to Ozimek’s research. However, these rates recovered quickly. In the second quarter of 2022, people with disabilities aged 25 to 54, the prime working age, are 3.5 percent more likely to be employed, compared to before the pandemic.
What about people without disabilites? They are still 1.1 percent less likely to be employed.
These numbers suggest that remote work has enabled a substantial number of people with disabilities to find and retain employment.
“We have a last-in, first-out labor market, and [people with disabilities] are often among the last in and the first out,” Ozimek says. However, this dynamic has changed, with adults with disabilities seeing employment rates recover much faster. Now, the question is whether the new trend will endure, Ozimek adds. “And my conclusion is that not only is it a permanent thing, but it’s going to improve.”
Gene Boes, president and chief executive of the Northwest Center, a Seattle organization that helps people with disabilities become more independent, confirms this finding. “The new world we live in has opened the door a little bit more…because there’s just more demand for labor.”
Long COVID disabilities put a premium on remote work
Remote work can help mitigate the impact of long COVID. The U.S. Centers for Disease Control and Prevention reports that about 19 percent of those who had COVID developed long COVID. Recent Census Bureau data indicates that 16 million working age Americans suffer from it, with economic costs estimated at $3.7 trillion.
Certainly, many of these so-called long-haulers experience relatively mild symptoms - such as loss of smell - which, while troublesome, are not disabling. But other symptoms are serious enough to be disabilities.
According to a recent study from the Federal Reserve Bank of Minneapolis, about a quarter of those with long COVID changed their employment status or working hours. That means long COVID was serious enough to interfere with work for 4 million people. For many, the issue was serious enough to qualify them as disabled.
Indeed, the Federal Reserve Bank of New York found in a just-released study that the number of individuals with disabilities in the U.S. grew by 1.7 million. That growth stemmed mainly from long COVID conditions such as fatigue and brain fog, meaning difficulties with concentration or memory, with 1.3 million people reporting an increase in brain fog since mid-2020.
Many had to drop out of the labor force due to long COVID. Yet, about 900,000 people who are newly disabled have managed to continue working. Without remote work, they might have lost these jobs.
For example, a software engineer at one of my client companies has struggled with brain fog related to long COVID. With remote work, this employee can work during the hours when she feels most mentally alert and focused, even if that means short bursts of productivity throughout the day. With flexible scheduling, she can take rests, meditate, or engage in activities that help her regain focus and energy. Without the need to commute to the office, she can save energy and time and reduce stress, which is crucial when dealing with brain fog.
In fact, the author of the Federal Reserve Bank of New York study notes that long COVID can be considered a disability under the Americans with Disability Act, depending on the specifics of the condition. That means the law can require private employers with fifteen or more staff, as well as government agencies, to make reasonable accommodations for those with long COVID. Richard Deitz, the author of this study, writes in the paper that “telework and flexible scheduling are two accommodations that can be particularly beneficial for workers dealing with fatigue and brain fog.”
The current drive to return to the office, led by many C-suite executives, may need to be reconsidered in light of legal and HR considerations. Arlene S. Kanter, director of the disability law and policy program at the Syracuse University College of Law, said that the question should depend on whether people with disabilities can perform their work well at home, as they did during Covid outbreaks. “[T]hen people with disabilities, as a matter of accommodation, shouldn’t be denied that right,” Kanter said.
Diversity benefits
But companies shouldn’t need to worry about legal regulations. It simply makes dollars and sense to expand their talent pool by 15% of an underrepresented minority. After all, extensive research shows that improving diversity boosts both decision-making and financial performance.
Companies that are offering more flexible work options have already gained significant benefits in terms of diverse hires. In its efforts to adapt to the post-pandemic environment, Meta, the owner of Facebook and Instagram, decided to offer permanent fully remote work options to its entire workforce. And according to Meta chief diversity officer Maxine Williams, the candidates who accepted job offers for remote positions were “substantially more likely” to come from diverse communities: people with disabilities, Black, Hispanic, Alaskan Native, Native American, veterans, and women. The numbers bear out these claims: people with disabilities increased from 4.7 to 6.2 percent of Meta’s employees.
Having consulted for 21 companies to help them transition to hybrid work arrangements, I can confirm that Meta’s numbers aren’t a fluke. The more my clients proved willing to offer remote work, the more staff with disabilities they recruited - and retained. That includes employees with mobility challenges. But it also includes employees with less visible disabilities, such as people with long COVID and immunocompromised people who feel reluctant to put themselves at risk of getting COVID by coming into the office.
Unfortunately, many leaders fail to see the benefits of remote work for underrepresented groups, such as those with disabilities. Some even say the opposite is true, with JP Morgan CEO Jamie Dimon claiming that returning to the office will aid diversity.
What explains this poor executive decision making? Part of the answer comes from a mental blindspot called the in-group bias. Our minds tend to favor and pay attention to the concerns of those in the group of people who seem to look and think like us. Dimon and other executives without disabilities don’t perceive people with disabilities to be part of their in-group. They thus are blind to the concerns of those with disabilities, which leads to misperceptions such as Dimon’s that returning to the office will aid diversity.
In-group bias is one of many dangerous judgment errors known as cognitive biases. They impact decision making in all life areas, ranging from the future of work to relationships.
Another relevant cognitive bias is the empathy gap. This term refers to our difficulty empathizing with those outside of our in-group. The lack of empathy combines with the blindness from the in-group bias, causing executives to ignore the feelings of employees with disabilities and prospective hires.
Omission bias also plays a role. This dangerous judgment error causes us to perceive failure to act as less problematic than acting. Consequently, executives perceive a failure to support the needs of those with disabilities as a minor matter.
Conclusion
The failure to empower people with disabilities through remote work options will prove costly to the bottom lines of companies. Not only are limiting their talent pool by 15 percent, they’re harming their ability to recruit and retain diverse candidates. And as their lawyers and HR departments will tell them, by violating the ADA, they are putting themselves in legal jeopardy.
By contrast, companies like Meta - and my clients - that offer remote work opportunities are seizing a competitive advantage by recruiting these underrepresented candidates. They’re lowering costs of labor while increasing diversity. The future belongs to the savvy companies that offer the flexibility that people with disabilities need.