Neuromarketers Are Studying Brain Scans to Influence Our Product Choices
When was the last time you made a pro-con list? Carefully considered all factors and weighed them against each other before you made a choice?
Chances are that most of your decisions do not follow this rigorous process. They are made quickly, subconsciously, and often do not adhere to any strict logic. Rather, your decisions are influenced by your mood, your relatives and friends, and a range of other factors that scientists are still unraveling.
When the shoppers were asked why they chose that bottle of wine, almost none of them noticed the music or believed it influenced their decision.
Influencing your choices is also the holy grail of marketing. Companies spend vast amounts of time and money creating product designs and ads. These ads are often tested in focus groups or individual interviews to ensure that they will do well in the market.
Traditional methods of market research rely on self-reports. The participants are asked which ad they find more appealing and why. But there are a few problems with this approach.
For one, the participants might not fully understand their true preferences. They might think that the green design looks more appealing when they compare choices, but then pick up the orange one when they mindlessly wander through the supermarket. It's well known that we humans often do not act rationally, so why would we accurately predict our own behavior?
Another issue is that we like to think of ourselves as logical. Even though our choices are at least partially made subconsciously, we have a tendency to rationalize them after the fact. For example, when supermarkets play French music, the shoppers are 3-4 times more likely to buy French wine. Play German music and German wine sales go up. But when the shoppers are asked why they chose that bottle of wine, almost none of them notice the music or believe it influenced their decision. Instead, they say that they preferred the label or price.
Finally, participants might truly know their preference but choose not to disclose it. Imagine sitting in a focus group watching a TV spot that makes fun of somebody's misfortune. You might be too embarrassed to admit that this is the funnier and more appealing spot, because you're afraid of being judged.
Results from traditional market research are therefore unavoidably subjective and biased.
In the hope of overcoming these limitations, newer ways of market research have been developed, among them neuromarketing, which applies neuroscience to marketing.
Today, neuromarketers focus their efforts on three main stages: to aid product ideation, evaluate the finished product or prototypes, and develop the best marketing strategy. In all cases, they want to find the option with the most "favorable" brain response – but exactly how this brain response is defined varies vastly between studies.
Perhaps the most promising of all non-traditional techniques is functional magnetic resonance imaging (fMRI). This neuroimaging technique measures brain activity indirectly by tracking changes in blood flow. In short, active brain areas receive more oxygen-rich blood. The fMRI scanner picks up the difference between oxygen-rich and oxygen-poor blood and can therefore measure which brain areas are more active than others. But is there truly an untapped potential in the human brain that can be unlocked using neuroimaging?
A number of studies claim that functional neuroimaging has been successfully applied to marketing scenarios. For example, when researchers tried to predict the success of 6 different ads for chocolate bars, the brain response of 18 women was reportedly more predictive than their self-reported preference. The ad that was rated best in interviews was actually the least successful in a real supermarket. In contrast, the neuroimaging algorithm correctly predicted the top two selling ads.
One of the biggest fears is that the potential insights from neuromarketing studies could be used in new, disturbing ways for consumer manipulation.
This study has a number of limitations, which are representative of the majority of neuromarketing research. The field is full of experiments that are conducted with small samples or using suboptimal protocols, with a lack of appropriate control conditions. While a small number of academic researchers are using rigorous protocols, most studies are conducted by neuromarketing companies or funded by the corporations whose products were tested. Such set-ups raise the risk of biased reporting, calling into question the reliability of the findings. Publication bias – the tendency to publish only positive results which leads to a skewing of reported results in the literature – is especially common for industry-funded studies.
One of the biggest fears is that the potential insights from neuromarketing studies could be used in new, disturbing ways for consumer manipulation. If a new product or ad campaign is designed to target our subconscious decision-making better than ever before, are we less able to resist the purchase? We might believe that we all have a healthy amount of self-control, but when we're in the supermarket after a stressful day or we're struggling to manage the self-control of someone else, like a small child, is it ethical for corporations to tap our unconscious decision-making?
As with any technology, the deciding factor is how it will be used. While there are many dangerous applications that might make unhealthy products one day impossible to resist, there are also some more optimistic scenarios. For example, brain scans have been used to predict the success of an antismoking campaign. If such public health interventions that are notoriously ineffective could encourage more people to make healthier lifestyle choices, don't we all benefit? Or is this still a step too far toward manipulation and propaganda?
The conduct of the studies themselves is another problematic area. Academic researchers must go through a rigorous process before they can start a study, which involves review by an ethics board. In contrast, there are barely any regulations for corporate studies. This is not only relevant for the experience of the participants, but also for how the data are being used. Take an extreme case – the brain scan reveals that the participant has a tumor. Universities have protocols in place for how to deal with these situations – often, the scans would be reviewed by a neuro-radiologist and the participant would be informed. Commercial organizations are under no such obligation.
Neuromarketing carries great potential to nudge positive behavioral change, though it also carries the risk of abuse.
Neuromarketing is now a highly competitive field with many different vendors. The Advertising Research Foundation compared 8 vendors that used neuroscientific methods or biometrics for the research of ad campaigns and found that there were differences in methodology and approach; most were proprietary and vendors were not willing to disclose what they measured and how. This lack of transparency is slowing down progress, as researchers cannot contrast and compare different approaches to optimize them.
Despite these methodological challenges, neuromarketing carries great potential to nudge positive behavioral change, though it also carries the risk of abuse. Where one ends and the other starts will need to be clearly defined. It's time to start a public debate now to inform future laws and regulations for the neuromarketing industry, as these technologies will eventually affect us all.
A sleek, four-foot tall white robot glides across a cafe storefront in Tokyo’s Nihonbashi district, holding a two-tiered serving tray full of tea sandwiches and pastries. The cafe’s patrons smile and say thanks as they take the tray—but it’s not the robot they’re thanking. Instead, the patrons are talking to the person controlling the robot—a restaurant employee who operates the avatar from the comfort of their home.
It’s a typical scene at DAWN, short for Diverse Avatar Working Network—a cafe that launched in Tokyo six years ago as an experimental pop-up and quickly became an overnight success. Today, the cafe is a permanent fixture in Nihonbashi, staffing roughly 60 remote workers who control the robots remotely and communicate to customers via a built-in microphone.
More than just a creative idea, however, DAWN is being hailed as a life-changing opportunity. The workers who control the robots remotely (known as “pilots”) all have disabilities that limit their ability to move around freely and travel outside their homes. Worldwide, an estimated 16 percent of the global population lives with a significant disability—and according to the World Health Organization, these disabilities give rise to other problems, such as exclusion from education, unemployment, and poverty.
These are all problems that Kentaro Yoshifuji, founder and CEO of Ory Laboratory, which supplies the robot servers at DAWN, is looking to correct. Yoshifuji, who was bedridden for several years in high school due to an undisclosed health problem, launched the company to help enable people who are house-bound or bedridden to more fully participate in society, as well as end the loneliness, isolation, and feelings of worthlessness that can sometimes go hand-in-hand with being disabled.
“It’s heartbreaking to think that [people with disabilities] feel they are a burden to society, or that they fear their families suffer by caring for them,” said Yoshifuji in an interview in 2020. “We are dedicating ourselves to providing workable, technology-based solutions. That is our purpose.”
Shota Kuwahara, a DAWN employee with muscular dystrophy. Ory Labs, Inc.
Wanting to connect with others and feel useful is a common sentiment that’s shared by the workers at DAWN. Marianne, a mother of two who lives near Mt. Fuji, Japan, is functionally disabled due to chronic pain and fatigue. Working at DAWN has allowed Marianne to provide for her family as well as help alleviate her loneliness and grief.Shota, Kuwahara, a DAWN employee with muscular dystrophy, agrees. "There are many difficulties in my daily life, but I believe my life has a purpose and is not being wasted," he says. "Being useful, able to help other people, even feeling needed by others, is so motivational."
When a patient is diagnosed with early-stage breast cancer, having surgery to remove the tumor is considered the standard of care. But what happens when a patient can’t have surgery?
Whether it’s due to high blood pressure, advanced age, heart issues, or other reasons, some breast cancer patients don’t qualify for a lumpectomy—one of the most common treatment options for early-stage breast cancer. A lumpectomy surgically removes the tumor while keeping the patient’s breast intact, while a mastectomy removes the entire breast and nearby lymph nodes.
Fortunately, a new technique called cryoablation is now available for breast cancer patients who either aren’t candidates for surgery or don’t feel comfortable undergoing a surgical procedure. With cryoablation, doctors use an ultrasound or CT scan to locate any tumors inside the patient’s breast. They then insert small, needle-like probes into the patient's breast which create an “ice ball” that surrounds the tumor and kills the cancer cells.
Cryoablation has been used for decades to treat cancers of the kidneys and liver—but only in the past few years have doctors been able to use the procedure to treat breast cancer patients. And while clinical trials have shown that cryoablation works for tumors smaller than 1.5 centimeters, a recent clinical trial at Memorial Sloan Kettering Cancer Center in New York has shown that it can work for larger tumors, too.
In this study, doctors performed cryoablation on patients whose tumors were, on average, 2.5 centimeters. The cryoablation procedure lasted for about 30 minutes, and patients were able to go home on the same day following treatment. Doctors then followed up with the patients after 16 months. In the follow-up, doctors found the recurrence rate for tumors after using cryoablation was only 10 percent.
For patients who don’t qualify for surgery, radiation and hormonal therapy is typically used to treat tumors. However, said Yolanda Brice, M.D., an interventional radiologist at Memorial Sloan Kettering Cancer Center, “when treated with only radiation and hormonal therapy, the tumors will eventually return.” Cryotherapy, Brice said, could be a more effective way to treat cancer for patients who can’t have surgery.
“The fact that we only saw a 10 percent recurrence rate in our study is incredibly promising,” she said.