New Podcast: "Making Sense of Science"
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
Making Sense of Science features interviews with leading medical and scientific experts about the latest developments and the big ethical and societal questions they raise. This monthly podcast is hosted by journalist Kira Peikoff, founding editor of the award-winning science outlet Leaps.org.
Episode 1: "COVID-19 Vaccines and Our Progress Toward Normalcy"
Bioethicist Arthur Caplan of NYU shares his thoughts on when we will build herd immunity, how enthusiastic to be about the J&J vaccine, predictions for vaccine mandates in the coming months, what should happen with kids and schools, whether you can hug your grandparents after they get vaccinated, and more.
Transcript:
KIRA: Hi, and welcome to our new podcast 'Making Sense of Science', the show that features interviews with leading experts in health and science about the latest developments and the big ethical questions. I'm your host Kira Peikoff, the editor of leaps.org. And today, we're going to talk about the Covid-19 vaccines. I'm honored that my first guest is Dr. Art Caplan of NYU, one of the world's leading bio-ethicists. Art, thanks so much for joining us today.
DR. CAPLAN: Thank you so much for having me.
KIRA: So the big topic right now is the new J&J vaccine, which is likely to be given to millions of Americans in the coming weeks. It only requires one-shot, it can be stored in refrigerators for several months. It has fewer side-effects and most importantly, it is extremely effective at the big things, preventing hospitalizations and deaths. Though not as effective as Pfizer and Moderna in preventing moderate cases, especially potentially in older adults with underlying conditions. So Art, what's your take overall, on how enthusiastic Americans should be about this vaccine?
DR. CAPLAN: I'm usually enthusiastic. The more weapons, the better. This vaccine, while maybe, slightly less efficacious than the Moderna and the Pfizer ones, is easier to make, is easier to ship. It's one-shot. You know, here there's already been problems of getting people to come back in for their second shots. I would say 5... 7% of people don't show up even though you remind them and you nag them, they don't come back. So a one-shot option is great. A one-shot option that's easy to, if you will, brew up in your rural pharmacy without having to have special instructions is great. And I think it's gonna really facilitate herd-immunity, meaning, we'll see millions and millions and millions of doses of the Janssen vaccine out there as an option, I'm gonna say, summer.
KIRA: Great. And to be fair, it's worth mentioning that the J&J vaccine was tested in clinical trials after variants began to circulate, and it's only one-shot instead of two, like the other vaccines, and it gets more effective over time. So is it really fair to directly compare its efficacy to the mRNA vaccines?
DR. CAPLAN: Well, you know, people are gonna do that. And one issue that'll come up ethically is people are gonna say, "Can I choose my vaccine? I want the most efficacious one. I want the name brand that I trust. I don't want the new platform. I like Janssen's 'cause it's an older, more established way to make vaccines or whatever." Who knows what cuckoo-cockamamie reasons they might have. To me, you take what you can get, it'll be great. It's way above what we normally would expect, those 95% success rates are off the charts. Getting something that's 70% effective, it's perfectly wonderful. I wish we had flu shots that were 70% effective.
And the other thing to keep in mind is we're gonna see more mutations, we're gonna see more strains. That's just a reality of viruses. So they'll mutate, more strains will appear, we can't just say, "Oh my goodness. There's a South-African one or the California one or the UK one. We better... I don't know, do something different." We're just gonna have to basically resign ourselves, I think, to boosters. So right now, take the vaccine. I'm almost tempted to say, "Shut up and take the vaccine. Don't worry about choosing."
Just get what you can get. If you live in a rural community and all they have is Janssen, take it. If you're in another country and all they ship to you is Janssen, take it. And then we'll worry about the next round of virus mutations, if you will, when we get to the boosters. I'm more concerned that these things aren't gonna last more than a year or two than I am that they're not gonna pick up every mutation.
KIRA: So on that note, shipping to rural places or low-income countries that lack the ultra-cold freezers that you need for the super effective mRNA vaccines, the Janssen vaccine seems like a really great option, but are we going to encounter a potential conflict of people saying, "Well, there's "poor or rich vaccines," and one is slightly less effective than the other." And so are we gonna disenfranchise people and undermine their actual willingness to take the vaccine?
DR. CAPLAN: Well, it's interesting. I think the first problem is gonna be, "I have vaccine and I don't have any vaccine," between rich and poor countries. Look, the poor countries are screaming to get vaccine supply sent to them. I think, for example, Ghana received recently 600 million doses of AstraZeneca vaccine. It was freed up by South Africa, which decided they didn't wanna use it 'cause they thought there was "a better vaccine" coming. So even among the poorer nations or the developing nations, some vaccines are getting typed as the not-as-good or the less-desirable... We've already started to see it.
But for the most part, the rich countries are gonna try and vaccinate to herd immunity, you can argue about the ethics of whether that's right, before they start sharing. And I think we'll have haves and have-nots, herd immunity produced in the rich countries, Japan, North America, Europe, by the end of the year anyway. And still some countries floundering around saying, "I didn't get anything," and what are you gonna do?
KIRA: And I know you said to people, which is a very memorable quote, "just shut up and take the vaccine, whatever you can get, whatever is available to you now, do it." But inevitably, as you mentioned, some people are going to say, "Well, I just wanna wait to get the best one possible." When will people have a choice in vaccines, do you think?
DR. CAPLAN: I don't think you'll see that till next year. I think we're gonna see distribution according to where the supply chains are that the vaccine manufacturers use. So if I use McKesson and they ship to the Northeast, and that's where my vaccine goes, that's what's available there. If I'm contracted to Walmart and they buy Janssen, that's what you're gonna see at the big box store. I don't think you're really gonna get too much in the way of choice until next year, when then they're gonna say they ship three different kinds of vaccine, and I can offer you one dose or two dose... One of them lasts a year, one of them lasts 18 months. I don't think we're gonna have the informed choice until next year.
KIRA: Okay. And right now the steep demand is outstripping the supply, and there's been a lot of pressure put on the vaccine makers to ramp up as quickly as possible. Of course, they say that they're doing that and the government is pressuring them to do that, but when do you think we'll cross over to the point where vaccine hesitancy is a bigger issue than vaccine demand?
DR. CAPLAN: Yeah. So this is a really interesting issue. I'm glad you asked me this because I think it's got good foresight. The big ethics fight now is scarcity and who goes first, and the ethicists, including me, are having a fine old time arguing about healthcare workers versus policemen versus people who work for UPS versus somebody who's working at the drug store. Who's more important? Why are they more important? Who's essential?
Actually, I think most of that is nonsense, because what we've learned is that you can't do much in the way of micro-allocation, the system strains, and it doesn't work. You've gotta use some pretty broad categories like over 65, still breathing and working, and a kid. The kid will go last, 'cause we don't have the data, everybody else should get in line and the over 65s should probably be first 'cause they're at high risk. We can't do this. We stink at the micro-management of vaccine supply, plus it encourages cheating. So everybody's out there with vaccine hunters, vaccine tourism, bribing, lying, dressing up like a grandmother to get a vaccine. My favorite one was some rich people in Vancouver flew up to the Yukon and pretended to be Inuit aboriginal people to get a vaccine. That will all pass.
We'll have enough vaccine by the summer, more or less, that the issue will then be, "How are we gonna get to herd immunity or at least maximal immunity, knowing that we don't have data on kids?" People under 18, I think are something like 20% of our population. That means the best you could do is 80%. The other population still could be passing the virus, kids here or Europe or wherever. Well, the military refusal rate that I just saw was 30% saying no. I've heard nursing home staff rates, nursing attendants, nursing aids up at 40% to 50% saying no. So these are huge refusal rates, people are nervous about how it works, the vaccine. Some of them are like, "Well Art you take it. If you're still alive in six months, then maybe I'll take it, but I wanna see that it really works and it's safe." And other people say, "We don't wanna be exploited. We don't trust the government, whatever, to offer us these vaccines."
I'm gonna answer that was a long-winded way of saying we're gonna see some mandates, we're gonna see some coercions start to show up in the vaccine supply, because I think, for example, the military. The day one of these license gets... Excuse me, one of these vaccines get licensed, right now they're on an emergency approval, collect data for three or four more months, get the FDA to formally license the thing. I'd say between five minutes and 10 minutes, the military will be mandating. They have no interest in your objection, they have no interest in your choice, they know what the mission is. It's traditionally, we're gonna get you as healthy as we can to fight a war.
The fact that you say, "Gee, I might die." They kind of say, "Yeah, we noticed that, but that's in the military culture. We fight wars and do stuff like that." So they'll be mandating, I think, very rapidly. And I think healthcare workers will. I think most hospitals are gonna say 50% refusal rate among this nursing group? Forget it. We can't risk that. Nursing homes have been devastated by COVID. They're not gonna have aids out there unvaccinated. The only thing holding up the mandates right now is that we don't have full licensure. We have emergency use approvals, and that's good.
But it's a little tough to mandate without full license. The day we get it, three months, four months, we're gonna start to see mandates. And I'll make one more prediction, as long as I'm in a crystal ball mode. It won't be the government at that point that says, you have to be vaccinated. It'll be private business, 'cause they're gonna say, "You know what? Come on my cruise ship, 'cause everybody who works here is vaccinated." "Come on into my bar, everybody who works here is vaccinated." They're gonna start to use it as an advertising marketing lure. "It's safe here. Come on in." So I think they'll say, "If you wanna work on an airline as a flight attendant, you get vaccinated. We have vaccine proof. You can show it on your iPhone, on your whatever, you have a card that you did it." And so I think we'll see many businesses moving to vaccinate so that they can bring their customers back in.
KIRA: So private businesses, that's one thing, because people do not have to patronize those places if they don't wanna get vaccinated. But of course, this is gonna open up a can of worms with schools. Public schools, if they mandate teacher vaccines and you have to send your kid to school and you have to go to work at a school. What happens then?
DR. CAPLAN: Well, schools are gonna be at the end of the line. That's where we have the least data. So I don't think we're gonna see school mandates on kids, maybe not till next year. But we already have school mandates on kids. They were the first group to feel the force of mandates, because it turns out that measles and mumps and whooping cough are easy to get at school, sneezing and coughing on one another. Some states have added flu shots. Many states, California, Maine, New York have actually eliminated exemptions. The only way out for those kids is if they have a health reason. They're not even allowing religious or so-called philosophical or personal choice exemptions. COVID vaccines will just line up right next to those things.
Teachers will demand it, the pressure will be there. We'll have a lot of information by next year on safety. I'm even gonna say people are gonna be less tolerant of non-vaccinators. Now it's sort of like, "Wow. Yeah, I guess." But this time next year, if you haven't vaccinated, people are gonna come to your house and board it up and make you stay inside.
KIRA: Well, given how much we're so dependent on these vaccines to get us back to a regular life, I can understand the sentiment. What is your take on the big controversy right now, just going back towards the present day a little bit more on having kids in schools. Is that something you support before all the teachers have been vaccinated?
DR. CAPLAN: I do, but I have a problem with the definition of a teacher and a school. So by the way, some people that I know, friends of mine have said, "Well, I'm a teacher, I'm a yoga instructor. I'm a teacher, I'm an aerobics instructor. So I should get priority access to vaccination." I don't think that's what we meant by teacher. And here's the difference in schools. I live in Ridgefield, Connecticut. Up the street for me is a very fancy private elementary school. It has endless grounds, open classrooms. If there are eight kids in a class, I'll pass out. It is great. I wish I went to college there. It's a wonderful set up. Do they need to vaccinate everybody? Probably not, they're all sitting six feet apart, everybody in there is gonna mask, they have huge auditoriums. They never have to come in contact.
I've been in some other schools in the Bronx. No ventilation, no plumbing, 35 kids in a class, the teacher's 65. And you sort of think, "Boy, I'd wanna have vaccinate everybody in sight in this place because unless we re-haul the buildings and downsize the class size, people are gonna get sick in here."
They probably were getting sick anyway before COVID, but now COVID makes it worse. They're probably getting the flu or colds at nine times the rate that they were in Ridgefield, Connecticut. So my point is this, high school kids doing certain things, they can come in on a mixed schedule three days a week, two days a week, do their thing, they know how to mask. Am I worried about vaccinating there? Not too much. Elementary school kids need psychosocial development, need to learn social skills, sometimes going to schools that aren't that wonderful. Yeah, let's vaccinate them. So even though I was complaining a bit about micro-management and trying to parse out, here I think you need to do it. I think you're probably gonna say college, I don't know that you have to vaccinate there. High schools, 50/50. Elementary school, let's do them first.
KIRA: Got it. And one more question on kids before I wanna move on, there's been talk about whether it's necessary before kids are allowed to get this vaccine to have the FDA go to full approval with the full bulk of data necessary for that versus just an emergency authorization for the general population, given that kids are at so much lower risk than adults. But then of course, it'll take a lot more time, I imagine, to get the kids the vaccines. What's your take on that?
DR. CAPLAN: We historically have demanded higher levels of evidence to do anything with a kid, and I think that's gonna hold true here too. I don't think you're gonna see emergency-use authorization for people under 18. Maybe they'd cut it and say, "We'll do it 12-18," but just looking at the history of drug development, vaccine development, people are really leery of taking risks with kids and appropriately so. Kids can't even make their own decision. I can decide if I wanna take an emergency-use vaccine, if I think it's too iffy I don't take it right now. So up to me to weigh the risk-benefit. I don't think so. I think you'll see licensing required before we really get it, at least 12 and under. Let's put it there. And I'm not worried about the safety or efficacy of these things in kids. I think there's no reason, given the biological mechanisms, to think they're gonna be any different. But it's gonna be pretty tough pre-licensure to impose anything.
KIRA: And when do you think that licensure for kids under 12 could come?
DR. CAPLAN: Well, two groups of people are now being studied, pregnant women, the studies just launched. They'll probably be done sufficiently by the end of the year. Kids for full licensure, spring next year.
KIRA: Okay. And because this is a big question for a lot of women that I know and women in general who are pregnant, what would you say to them now, where we don't have the data yet on the safety, but they have to decide and they can't wait six or nine more months?
DR. CAPLAN: Vaccinate yesterday. Literally, I think the COVID virus is too dangerous, I think it's dangerous to the mom, I think it's dangerous to the fetus. It is an unknown, but boy, I would bet on the vaccine more than I would taking my chances with the virus.
KIRA: Got it. So let's pivot a little bit and talk about some of the big open questions around the vaccines that we're starting to get some early evidence about. For one thing, do they prevent transmission and not just symptomatic disease. And I think it's worth pointing out for our audience here that there is a big difference between preventing symptoms and preventing infections, as lots of asymptomatic people know. And we have a lot of new real-world evidence from Israel, from Scotland, reporting that even asymptomatic infections are greatly reduced by the Pfizer vaccine, for example. What is your take on how this new data is going to change guidance around post-vaccination behaviors?
DR. CAPLAN: Yeah. What do we got in the podcast? Seven or eight hours to go? That's a tough one. It's complicated. But trying to over-simplify a little bit. So there is a difference, and this has gotten confusing, I fear. Some vaccines prevent you from getting infected at all. It looks like the Pfizer and the Moderna fall into that category. That's great, 'cause no matter what else, it probably means you're gonna reduce transmission, 'cause if you can't be infected, I don't know how you're gonna give it to somebody else. So I'll bet that that's a transmission reduction. Looks like Johnson & Johnson, unclear. Seems to prevent bad symptoms and death but not moderate disease, and it isn't clear that it stops you from getting infected. So that may become an issue in terms of how we strategically approach when we have enough vaccine of the different types. We may wanna say, "Look, in some environments, we've gotta control spread... Nursing home. We wanna see the Moderna there. We wanna see the Pfizer there."
In other situations, we just wanna make sure you're not dead, let's get the Janssen thing out there. And that'll be great. I'll tell you... I'll give you an example from my own current existence. So I've been pretty cautious... As I said, I live in Ridgefield, Connecticut. I have a house, pretty roomy, but I haven't left it very often. I'm willing to take the chance to go shopping. I'll confess I'm even willing to take the chance wearing a mask to go to the drug store and I've had a hair-cut or two. So I've been not hyper-cautious, but cautious. I don't invite people over that I don't know where they've been, so to speak. But now I'm vaccinated, and my wife is fully vaccinated. And the other night for the first time, we went out to an indoor restaurant. Probably haven't done that in 10 months... No, I don't know, six months. But a long time...
KIRA: I hope you really enjoyed that first meal out, 'cause that's something that I dream about. Boy, where am I gonna go and what am I gonna order?
DR. CAPLAN: Yeah. We went to the fanciest restaurant in town, as a matter of fact, and they were social distancing and everybody was masked and the wait staff. But I figure, good enough for me. If the thing isn't gonna kill me, if I was just told I was gonna have a risk of being sick for three days or something, that's good enough for me. I don't wanna infect somebody else. So I'll still mask and do that, I'm not sure. But I'm absolutely ready to say, and in fact, I've scheduled two trips. We're gonna take a trip to Florida, we're gonna take a trip to North Carolina in March and April. I'm figuring even then, things will be better. But everybody's gonna have choices like that to make. It'll be really interesting. If I'm Tony Fauci or one of our big public health guys, I don't want anybody going anywhere, I'm risk-averse, until maybe 2027. I think it'll be controlled and eliminated... We'll have lots of data and everything will be great. I'm a little bit more, shall we say, individual choice-oriented, making individual risk things, like I said. As long as I'm responsible to others.
I don't wanna make anybody else sick, but if I am ready to take the chance of just being sick for a few days, and I believe the vaccines available will keep me out of the hospital and keep me out of the Morticians building. Okay, I'm ready to do it. So each one of us is gonna have to make a value decision, this is what I find interesting, about what's normal. It isn't science. It isn't medicine. It's ethics. You're gonna have to decide how much risk do you wanna take. Do you wanna be a jerk to your neighbor, if you could still have a teeny chance of infecting them? Am I willing to live in a world where COVID is around but it's kinda rare? I know kids are still transmitting, but it's not really a huge risk. That's the kind of value choice that each of us will be faced with.
KIRA: I really appreciate your emphasis on individual choice and values here and letting... Basically allowing people to make those judgments based on their circumstances for themselves. If you're not deathly afraid of getting a mild cold-type illness, then I can understand why you wanna fly or go to a restaurant, and other people might not be comfortable with any risk at all, and they're perfectly welcome to stay home.
DR. CAPLAN: Or they may say, "I'm 80, I have nine chronic diseases. A mild illness still freaks me out." Okay, I get that. I'm perfectly respectful of that. It's interesting. I think we've been used to public health messaging, and people have this attitude that at some point, Fauci or the head of the CDC, somebody's gonna show up on TV and say, "All clear, everything's over, back to normal, we've declared victory over the enemy. It's armistice day." Whatever. It isn't gonna work like that is my prediction. It's gonna be a slow creep, different people deciding, "I'm safe enough, I'm wandering out." Other people say, "No, no, not ready." Or somebody saying, "I'm pregnant. I'm staying in. I don't care what's going on. I'm not gonna take that risk." I think people will be surprised that there isn't going to be a national day of resolution or something. [chuckle]
KIRA: Right. It's more about these individual behaviors and over time, letting people decide what to do. So for example, if you had grandkids and they were not vaccinated, but you are, would you hug them, would you get close to them, how would you behave and how do you think they should behave around you?
DR. CAPLAN: So I'd be still nervous about them transmitting, but I'm also a very strong believer in my vaccine. So yes, I would hug them, and yes, I would have them come to visit. And that's probably gonna happen actually fairly soon. But their parents aren't vaccinated yet. And so I'm still nervous that maybe better not to do a lot of social mingling right now. But yeah, people have said to me, "My grandmom is 94. I don't know how long she's gonna be here. You think if I'm vaccinated it's okay to pay a visit." I'm gonna start to say, "Yeah, I get that."
KIRA: And I think one thing that's lost in these discussions of safety is also the aspect of benefits to human life and why we even live in the first place. We don't live lives of complete safety. We drive, we fly, we do things that are risky, but we take those risks, because it's worth it. So I think that should be part of the discussion overall, not just safety, period.
DR. CAPLAN: And not just saving lives. So ski slopes, there are a lot of orthopedic clinics at the bottom of big ski slopes, and sending a message like, "You can break bones here." But people say, "I wanna do it, I enjoy it." Okay, I'm not sure all the time that we should factor all of that into our pooled insurance plan, but that's a fight for another day. Nonetheless, I would... You know something, I would pay for it 'cause I like to encourage people to enjoy themselves. So I have my bad habits, they have their bad habits. I think it's sort of a wash in a certain way. But more to your point, I think if you look out there and say, there are some areas where we don't let you choose. You must put your kid in a car seat. A kid can't make a decision, the thing is very effective, really saves their lives, they should have a life ahead of them, and we're gonna force it. And I'm all for that.
In other instances, I might go into the restaurant. I think it's part of the general, "Am I gonna drive a car, am I gonna cross a busy street... " As you said, there are many things I have to do where I have to think about the risk-benefit. I may make a lousy calculation and underestimate what it means to get in my car and drive in terms of risk relative to getting hit by lightening or some other risks, but that's a little bit more for me.
KIRA: So that's a really thought-provoking conversation, but I wanna switch for a minute to another question mark around the vaccines besides transmission, is the long-term studies of their effects on the immune system. And one thing that I've noticed some experts are concerned about is the fact that a lot of the people in the placebo groups have dropped out of the trials and gotten the vaccine because ethically you can't withhold the vaccinations from these volunteers, but at the same time, that could be hurting our ability to compare the vaccine's long-term effects against people who haven't had the vaccine for a long time. So how significant is this issue in your mind?
DR. CAPLAN: Big. Some people actually proposed that we not let them drop out, we not tell the subjects in these big trials of vaccines if they were in the placebo group. Can't do that. It's clearly unethical... Achieved consensus on that decades ago, with various studies where the researcher said, "We don't have to tell the subjects that there's a treatment." Tuskegee did that, for example, the horrible study in the early, late '60s, early '70s, where they didn't tell people there was a cure and kept the study going of venereal disease, but there have been many others since. We already know you gotta give them the option. Some people may stay in anyway, but not enough to allow the study to really have integrity. So I think current studies are likely to fall apart and we won't get answers in the way we're used to with randomized trials to the long-term effects or even to the how long does it last question.
We need to build a system that can follow people. We can't rely on them being in an observed clinical trial. We have to start to say, "You register, we're gonna check on you every year to see how you're doing." That's gotta be done. And one other provocative idea, I pushed it long ago, challenge studies. Deliberately infect a small group of people, hopefully healthy people that choose to do it with mild COVID and then see what the vaccine does in them and then get an answer faster if you study them over time, they volunteered knowingly to get exposed this way. I think you're gonna see some challenge studies done particularly to compare vaccines. There are still more vaccines coming, maybe some of them will last longer, cheaper, safer, I don't know. The only way you're gonna study the next round of vaccines is in a challenge study. You're never getting anybody to sign up to be in a placebo control randomized trial.
KIRA: So that was actually my next question, that the UK just approved the first ever challenge study to infect the volunteers on purpose with the virus. Now, the UK has often been much more progressive in doing medical research than the US. Do you think the US will ever get to that point or are we just gonna rely on other countries to do that for us?
DR. CAPLAN: I think we won't get there. We're so conservative, so litigation conscious. People are freaked out that if somebody got sick and died in a challenge study, it would bankrupt the sponsor. I think the UK is on the right path, but I don't really think we're gonna follow.
KIRA: Okay, well, I hope that they can do the work that we really need. And I'm grateful that there are other countries that are more permissive of risk-taking and doing the controversial studies that are required.
DR. CAPLAN: Ironically, if you don't do the challenge studies, the only other way you're gonna get to do big-scale randomized placebo trials is in the poorest countries that can't get anything. And that makes it an awful lot like exploitation, taking advantage, as opposed to choice. But that's where you'd go, you'd say, "Oh, I got this new vaccine, I'll test it out in Sierra Leone and they don't have anything anyway. So better that half of them get the vaccine than not." And I still think the challenge study makes more ethic sense.
KIRA: Yeah, absolutely. That would really be a shame to be put in that position instead of just allowing people to decide. We let people sign up for the army where they might die. What's the ethical difference with signing up for a potentially dangerous study, but if you're young and healthy, the risk is low?
DR. CAPLAN: By the way, the risk from COVID to say, 18 to 35-year-olds, who's who you'd be looking at, is about the same as donating a kidney, which we also allow all the time.
KIRA: Right, right. Great point. Before we finish up here, I just wanna quickly touch on, of course, the big elephant in the room, which we all have to deal with, unfortunately, which is the variants. So I wanna talk about where we stand. I've heard some vaccine experts recently say, like Paul Offit, for example, has said he doesn't expect a fourth surge due to this, but others are more cautious and take the flip side saying, "This is the calm before the storm. We're about to see another huge explosion." California has recently reported a new strain as accounts for maybe potentially 50% of cases now, and it could be 90% by the end of March. But we're seeing such big declines in the numbers in hospitalizations, in cases. So what should people make of these conflicting messages?
DR. CAPLAN: There's an attitude in medicine that many doctors take toward things like incipient or new prostate cancer, sometimes toward breast cancer, or at least lumps. It's called watchful waiting. You pay attention. You watch what's going on. But you don't do anything right away. I would still get vaccinated, I would still take what I could get. I still believe that it's likely that these vaccines are gonna provide some protection, if not against infection, then at least against the worst symptoms and the worst chances of dying because they're really gonna boost up the basic immune system, which should be able to start to fight against viruses.
That said, could we wind up with some virulent new strain that evades the current vaccine platforms? Yes. Is it likely? I don't think so. But what it does mean is get ready to get boosters because the response to new strains that have been a result of viral mutations is you gotta adjust your vaccine. That's what we'll do. I hope it doesn't send us back into quarantine and isolation and distancing and all the rest of it as our only control. I'm hoping that the manufacturers can roll out boosters more quickly than the first round of vaccines.
KIRA: And the FDA has just said that the vaccine developers will not need to start over with new clinical trials to these boosters. So that will greatly expedite the process. And do you think that's the right call?
DR. CAPLAN: Yes, absolutely. You're not changing the fundamental nature of the vaccine platform, you're just tweaking, if you will, which chemistry responds to the virus. So yeah, I do.
KIRA: And one question then that necessarily everyone is gonna wonder is, "Well, if I got the J&J vaccine, can I get an mRNA booster?" Can you mix and match? Is that gonna work for your immune system?
DR. CAPLAN: Yeah. We don't have any idea. And I wouldn't do that right away. I know some countries are thinking about that to get more, if you will, use out of a limited supply. I'd say wait three months and do it the right way, where the data is in evidence. I'm not worried about people getting a second shot of something different and dropping dead. I'm just worried that it won't work. [chuckle] So I'm not a fan of mix and match. You can do it in some studies, by the way. You could do it in some challenge studies and get a faster answer than you would having to try and do this in 30,000 people over a year. But no, I don't think that's a good way to go. And I'm not a big fan of one-shot strategies either. I think, what we know is that the second shot really kicks your immune system into high gear and that's what you want for real protection. So I know why people say it but I wouldn't advocate for it.
KIRA: Right. And for my last question. One of our big themes this year that we'll be following all throughout the year at leaps.org is our progress towards an eventual return to life and return to normalcy. So I have to ask that question to you. Given everything that you know and that we've discussed today, when do you think our lives and society will start to look normal again, with schools, and restaurants, and businesses open, people are flying and gathering without fear, traveling, etcetera?
DR. CAPLAN: I think you're gonna see a lot of that this summer. There's gonna be enough vaccine out there, even if the epidemiologists aren't 100% happy. As I said, I think a lot of people are gonna say, "I'm happy enough, good enough for me. I'm going to sports and I'm flying, and I'm taking a vacation." And we'll be outside again. Remember we had the ability to eat outdoors and congregate less when the weather's better around the whole country, and I think that will open up Europe and the US in addition. What I'm worried about is if we had to go back in the fall to a more controlled environment, either 'cause a new strain appeared, or just because things weren't as efficacious as we hoped they'd be. But I think summer is gonna be good this year.
KIRA: Well, I hope you're right. I hope your crystal ball is working today. [chuckle]
DR. CAPLAN: [chuckle] And if it's not working right, email Kira. Don't talk to me.
KIRA: Yeah, I cannot be held liable for this. Thank you Art for a fascinating discussion. And thanks to everyone for listening. If you like this show, follow Making Sense of Science to hear new episodes coming once a month. And if you wanna give us feedback, we'd love to hear from you. Get in touch on our website, leaps.org. And until next time, thanks everyone.
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
Regenerative medicine has come a long way, baby
The field of regenerative medicine had a shaky start. In 2002, when news spread about the first cloned animal, Dolly the sheep, a raucous debate ensued. Scary headlines and organized opposition groups put pressure on government leaders, who responded by tightening restrictions on this type of research.
Fast forward to today, and regenerative medicine, which focuses on making unhealthy tissues and organs healthy again, is rewriting the code to healing many disorders, though it’s still young enough to be considered nascent. What started as one of the most controversial areas in medicine is now promising to transform it.
Progress in the lab has addressed previous concerns. Back in the early 2000s, some of the most fervent controversy centered around somatic cell nuclear transfer (SCNT), the process used by scientists to produce Dolly. There was fear that this technique could be used in humans, with possibly adverse effects, considering the many medical problems of the animals who had been cloned.
But today, scientists have discovered better approaches with fewer risks. Pioneers in the field are embracing new possibilities for cellular reprogramming, 3D organ printing, AI collaboration, and even growing organs in space. It could bring a new era of personalized medicine for longer, healthier lives - while potentially sparking new controversies.
Engineering tissues from amniotic fluids
Work in regenerative medicine seeks to reverse damage to organs and tissues by culling, modifying and replacing cells in the human body. Scientists in this field reach deep into the mechanisms of diseases and the breakdowns of cells, the little workhorses that perform all life-giving processes. If cells can’t do their jobs, they take whole organs and systems down with them. Regenerative medicine seeks to harness the power of healthy cells derived from stem cells to do the work that can literally restore patients to a state of health—by giving them healthy, functioning tissues and organs.
Modern-day regenerative medicine takes its origin from the 1998 isolation of human embryonic stem cells, first achieved by John Gearhart at Johns Hopkins University. Gearhart isolated the pluripotent cells that can differentiate into virtually every kind of cell in the human body. There was a raging controversy about the use of these cells in research because at that time they came exclusively from early-stage embryos or fetal tissue.
Back then, the highly controversial SCNT cells were the only way to produce genetically matched stem cells to treat patients. Since then, the picture has changed radically because other sources of highly versatile stem cells have been developed. Today, scientists can derive stem cells from amniotic fluid or reprogram patients’ skin cells back to an immature state, so they can differentiate into whatever types of cells the patient needs.
In the context of medical history, the field of regenerative medicine is progressing at a dizzying speed. But for those living with aggressive or chronic illnesses, it can seem that the wheels of medical progress grind slowly.
The ethical debate has been dialed back and, in the last few decades, the field has produced important innovations, spurring the development of whole new FDA processes and categories, says Anthony Atala, a bioengineer and director of the Wake Forest Institute for Regenerative Medicine. Atala and a large team of researchers have pioneered many of the first applications of 3D printed tissues and organs using cells developed from patients or those obtained from amniotic fluid or placentas.
His lab, considered to be the largest devoted to translational regenerative medicine, is currently working with 40 different engineered human tissues. Sixteen of them have been transplanted into patients. That includes skin, bladders, urethras, muscles, kidneys and vaginal organs, to name just a few.
These achievements are made possible by converging disciplines and technologies, such as cell therapies, bioengineering, gene editing, nanotechnology and 3D printing, to create living tissues and organs for human transplants. Atala is currently overseeing clinical trials to test the safety of tissues and organs engineered in the Wake Forest lab, a significant step toward FDA approval.
In the context of medical history, the field of regenerative medicine is progressing at a dizzying speed. But for those living with aggressive or chronic illnesses, it can seem that the wheels of medical progress grind slowly.
“It’s never fast enough,” Atala says. “We want to get new treatments into the clinic faster, but the reality is that you have to dot all your i’s and cross all your t’s—and rightly so, for the sake of patient safety. People want predictions, but you can never predict how much work it will take to go from conceptualization to utilization.”
As a surgeon, he also treats patients and is able to follow transplant recipients. “At the end of the day, the goal is to get these technologies into patients, and working with the patients is a very rewarding experience,” he says. Will the 3D printed organs ever outrun the shortage of donated organs? “That’s the hope,” Atala says, “but this technology won’t eliminate the need for them in our lifetime.”
New methods are out of this world
Jeanne Loring, another pioneer in the field and director of the Center for Regenerative Medicine at Scripps Research Institute in San Diego, says that investment in regenerative medicine is not only paying off, but is leading to truly personalized medicine, one of the holy grails of modern science.
This is because a patient’s own skin cells can be reprogrammed to become replacements for various malfunctioning cells causing incurable diseases, such as diabetes, heart disease, macular degeneration and Parkinson’s. If the cells are obtained from a source other than the patient, they can be rejected by the immune system. This means that patients need lifelong immunosuppression, which isn’t ideal. “With Covid,” says Loring, “I became acutely aware of the dangers of immunosuppression.” Using the patient’s own cells eliminates that problem.
Microgravity conditions make it easier for the cells to form three-dimensional structures, which could more easily lead to the growing of whole organs. In fact, Loring's own cells have been sent to the ISS for study.
Loring has a special interest in neurons, or brain cells that can be developed by manipulating cells found in the skin. She is looking to eventually treat Parkinson’s disease using them. The manipulated cells produce dopamine, the critical hormone or neurotransmitter lacking in the brains of patients. A company she founded plans to start a Phase I clinical trial using cell therapies for Parkinson’s soon, she says.
This is the culmination of many years of basic research on her part, some of it on her own cells. In 2007, Loring had her own cells reprogrammed, so there’s a cell line that carries her DNA. “They’re just like embryonic stem cells, but personal,” she said.
Loring has another special interest—sending immature cells into space to be studied at the International Space Station. There, microgravity conditions make it easier for the cells to form three-dimensional structures, which could more easily lead to the growing of whole organs. In fact, her own cells have been sent to the ISS for study. “My colleagues and I have completed four missions at the space station,” she says. “The last cells came down last August. They were my own cells reprogrammed into pluripotent cells in 2009. No one else can say that,” she adds.
Future controversies and tipping points
Although the original SCNT debate has calmed down, more controversies may arise, Loring thinks.
One of them could concern growing synthetic embryos. The embryos are ultimately derived from embryonic stem cells, and it’s not clear to what stage these embryos can or will be grown in an artificial uterus—another recent invention. The science, so far done only in animals, is still new and has not been widely publicized but, eventually, “People will notice the production of synthetic embryos and growing them in an artificial uterus,” Loring says. It’s likely to incite many of the same reactions as the use of embryonic stem cells.
Bernard Siegel, the founder and director of the Regenerative Medicine Foundation and executive director of the newly formed Healthspan Action Coalition (HSAC), believes that stem cell science is rapidly approaching tipping point and changing all of medical science. (For disclosure, I do consulting work for HSAC). Siegel says that regenerative medicine has become a new pillar of medicine that has recently been fast-tracked by new technology.
Artificial intelligence is speeding up discoveries and the convergence of key disciplines, as demonstrated in Atala’s lab, which is creating complex new medical products that replace the body’s natural parts. Just as importantly, those parts are genetically matched and pose no risk of rejection.
These new technologies must be regulated, which can be a challenge, Siegel notes. “Cell therapies represent a challenge to the existing regulatory structure, including payment, reimbursement and infrastructure issues that 20 years ago, didn’t exist.” Now the FDA and other agencies are faced with this revolution, and they’re just beginning to adapt.
Siegel cited the 2021 FDA Modernization Act as a major step. The Act allows drug developers to use alternatives to animal testing in investigating the safety and efficacy of new compounds, loosening the agency’s requirement for extensive animal testing before a new drug can move into clinical trials. The Act is a recognition of the profound effect that cultured human cells are having on research. Being able to test drugs using actual human cells promises to be far safer and more accurate in predicting how they will act in the human body, and could accelerate drug development.
Siegel, a longtime veteran and founding father of several health advocacy organizations, believes this work helped bring cell therapies to people sooner rather than later. His new focus, through the HSAC, is to leverage regenerative medicine into extending not just the lifespan but the worldwide human healthspan, the period of life lived with health and vigor. “When you look at the HSAC as a tree,” asks Siegel, “what are the roots of that tree? Stem cell science and the huge ecosystem it has created.” The study of human aging is another root to the tree that has potential to lengthen healthspans.
The revolutionary science underlying the extension of the healthspan needs to be available to the whole world, Siegel says. “We need to take all these roots and come up with a way to improve the life of all mankind,” he says. “Everyone should be able to take advantage of this promising new world.”
Forty years ago, Joy Milne, a nurse from Perth, Scotland, noticed a musky odor coming from her husband, Les. At first, Milne thought the smell was a result of bad hygiene and badgered her husband to take longer showers. But when the smell persisted, Milne learned to live with it, not wanting to hurt her husband's feelings.
Twelve years after she first noticed the "woodsy" smell, Les was diagnosed at the age of 44 with Parkinson's Disease, a neurodegenerative condition characterized by lack of dopamine production and loss of movement. Parkinson's Disease currently affects more than 10 million people worldwide.
Milne spent the next several years believing the strange smell was exclusive to her husband. But to her surprise, at a local support group meeting in 2012, she caught the familiar scent once again, hanging over the group like a cloud. Stunned, Milne started to wonder if the smell was the result of Parkinson's Disease itself.
Milne's discovery led her to Dr. Tilo Kunath, a neurobiologist at the Centre for Regenerative Medicine at the University of Edinburgh. Together, Milne, Kunath, and a host of other scientists would use Milne's unusual sense of smell to develop a new diagnostic test, now in development and poised to revolutionize the treatment of Parkinson's Disease.
"Joy was in the audience during a talk I was giving on my work, which has to do with Parkinson's and stem cell biology," Kunath says. "During the patient engagement portion of the talk, she asked me if Parkinson's had a smell to it." Confused, Kunath said he had never heard of this – but for months after his talk he continued to turn the question over in his mind.
Kunath knew from his research that the skin's microbiome changes during different disease processes, releasing metabolites that can give off odors. In the medical literature, diseases like melanoma and Type 2 diabetes have been known to carry a specific scent – but no such connection had been made with Parkinson's. If people could smell Parkinson's, he thought, then it stood to reason that those metabolites could be isolated, identified, and used to potentially diagnose Parkinson's by their presence alone.
First, Kunath and his colleagues decided to test Milne's sense of smell. "I got in touch with Joy again and we designed a protocol to test her sense of smell without her having to be around patients," says Kunath, which could have affected the validity of the test. In his spare time, Kunath collected t-shirt samples from people diagnosed with Parkinson's and from others without the diagnosis and gave them to Milne to smell. In 100 percent of the samples, Milne was able to detect whether a person had Parkinson's based on smell alone. Amazingly, Milne was even able to detect the "Parkinson's scent" in a shirt from the control group – someone who did not have a Parkinson's diagnosis, but would go on to be diagnosed nine months later.
From the initial study, the team discovered that Parkinson's did have a smell, that Milne – inexplicably – could detect it, and that she could detect it long before diagnosis like she had with her husband, Les. But the experiments revealed other things that the team hadn't been expecting.
"One surprising thing we learned from that experiment was that the odor was always located in the back of the shirt – never in the armpit, where we expected the smell to be," Kunath says. "I had a chance meeting with a dermatologist and he said the smell was due to the patient's sebum, which are greasy secretions that are really dense on your upper back. We have sweat glands, instead of sebum, in our armpits." Patients with Parkinson's are also known to have increased sebum production.
With the knowledge that a patient's sebum was the source of the unusual smell, researchers could go on to investigate exactly what metabolites were in the sebum and in what amounts. Kunath, along with his associate, Dr. Perdita Barran, collected and analyzed sebum samples from 64 participants across the United Kingdom. Once the samples were collected, Barran and others analyzed it using a method called gas chromatography mass spectrometry, or GS-MC, which separated, weighed and helped identify the individual compounds present in each sebum sample.
Barran's team can now correctly identify Parkinson's in nine out of 10 patients – a much quicker and more accurate way to diagnose than what clinicians do now.
"The compounds we've identified in the sebum are not unique to people with Parkinson's, but they are differently expressed," says Barran, a professor of mass spectrometry at the University of Manchester. "So this test we're developing now is not a black-and-white, do-you-have-something kind of test, but rather how much of these compounds do you have compared to other people and other compounds." The team identified over a dozen compounds that were present in the sebum of Parkinson's patients in much larger amounts than the control group.
Using only the GC-MS and a sebum swab test, Barran's team can now correctly identify Parkinson's in nine out of 10 patients – a much quicker and more accurate way to diagnose than what clinicians do now.
"At the moment, a clinical diagnosis is based on the patient's physical symptoms," Barran says, and determining whether a patient has Parkinson's is often a long and drawn-out process of elimination. "Doctors might say that a group of symptoms looks like Parkinson's, but there are other reasons people might have those symptoms, and it might take another year before they're certain," Barran says. "Some of those symptoms are just signs of aging, and other symptoms like tremor are present in recovering alcoholics or people with other kinds of dementia." People under the age of 40 with Parkinson's symptoms, who present with stiff arms, are often misdiagnosed with carpal tunnel syndrome, she adds.
Additionally, by the time physical symptoms are present, Parkinson's patients have already lost a substantial amount of dopamine receptors – about sixty percent -- in the brain's basal ganglia. Getting a diagnosis before physical symptoms appear would mean earlier interventions that could prevent dopamine loss and preserve regular movement, Barran says.
"Early diagnosis is good if it means there's a chance of early intervention," says Barran. "It stops the process of dopamine loss, which means that motor symptoms potentially will not happen, or the onset of symptoms will be substantially delayed." Barran's team is in the processing of streamlining the sebum test so that definitive results will be ready in just two minutes.
"What we're doing right now will be a very inexpensive test, a rapid-screen test, and that will encourage people to self-sample and test at home," says Barran. In addition to diagnosing Parkinson's, she says, this test could also be potentially useful to determine if medications were at a therapeutic dose in people who have the disease, since the odor is strongest in people whose symptoms are least controlled by medication.
"When symptoms are under control, the odor is lower," Barran says. "Potentially this would allow patients and clinicians to see whether their symptoms are being managed properly with medication, or perhaps if they're being overmedicated." Hypothetically, patients could also use the test to determine if interventions like diet and exercise are effective at keeping Parkinson's controlled.
"We hope within the next two to five years we will have a test available."
Barran is now running another clinical trial – one that determines whether they can diagnose at an earlier stage and whether they can identify a difference in sebum samples between different forms of Parkinson's or diseases that have Parkinson's-like symptoms, such as Lewy Body Dementia.
"Within the next one to two years, we hope to be running a trial in the Manchester area for those people who do not have motor symptoms but are at risk for developing dementia due to symptoms like loss of smell and sleep difficulty," Barran had said in 2019. "If we can establish that, we can roll out a test that determines if you have Parkinson's or not with those first pre-motor symptoms, and then at what stage. We hope within the next two to five years we will have a test available."
In a 2022 study, published in the American Chemical Society, researchers used mass spectrometry to analyze sebum from skin swabs for the presence of the specific molecules. They found that some specific molecules are present only in people who have Parkinson’s. Now they hope that the same method can be used in regular diagnostic labs. The test, many years in the making, is inching its way to the clinic.
"We would likely first give this test to people who are at risk due to a genetic predisposition, or who are at risk based on prodomal symptoms, like people who suffer from a REM sleep disorder who have a 50 to 70 percent chance of developing Parkinson's within a ten year period," Barran says. "Those would be people who would benefit from early therapeutic intervention. For the normal population, it isn't beneficial at the moment to know until we have therapeutic interventions that can be useful."
Milne's husband, Les, passed away from complications of Parkinson's Disease in 2015. But thanks to him and the dedication of his wife, Joy, science may have found a way to someday prolong the lives of others with this devastating disease. Sometimes she can smell people who have Parkinson’s while in the supermarket or walking down the street but has been told by medical ethicists she cannot tell them, Milne said in an interview with the Guardian. But once the test becomes available in the clinics, it will do the job for her.
[Ed. Note: A older version of this hit article originally ran on September 3, 2019.]