Nobel Prize goes to technology for mRNA vaccines
When Drew Weissman received a call from Katalin Karikó in the early morning hours this past Monday, he assumed his longtime research partner was calling to share a nascent, nagging idea. Weissman, a professor of medicine at the Perelman School of Medicine at the University of Pennsylvania, and Karikó, a professor at Szeged University and an adjunct professor at UPenn, both struggle with sleep disturbances. Thus, middle-of-the-night discourses between the two, often over email, has been a staple of their friendship. But this time, Karikó had something more pressing and exciting to share: They had won the 2023 Nobel Prize in Physiology or Medicine.
The work for which they garnered the illustrious award and its accompanying $1,000,000 cash windfall was completed about two decades ago, wrought through long hours in the lab over many arduous years. But humanity collectively benefited from its life-saving outcome three years ago, when both Moderna and Pfizer/BioNTech’s mRNA vaccines against COVID were found to be safe and highly effective at preventing severe disease. Billions of doses have since been given out to protect humans from the upstart viral scourge.
“I thought of going somewhere else, or doing something else,” said Katalin Karikó. “I also thought maybe I’m not good enough, not smart enough. I tried to imagine: Everything is here, and I just have to do better experiments.”
Unlocking the power of mRNA
Weissman and Karikó unlocked mRNA vaccines for the world back in the early 2000s when they made a key breakthrough. Messenger RNA molecules are essentially instructions for cells’ ribosomes to make specific proteins, so in the 1980s and 1990s, researchers started wondering if sneaking mRNA into the body could trigger cells to manufacture antibodies, enzymes, or growth agents for protecting against infection, treating disease, or repairing tissues. But there was a big problem: injecting this synthetic mRNA triggered a dangerous, inflammatory immune response resulting in the mRNA’s destruction.
While most other researchers chose not to tackle this perplexing problem to instead pursue more lucrative and publishable exploits, Karikó stuck with it. The choice sent her academic career into depressing doldrums. Nobody would fund her work, publications dried up, and after six years as an assistant professor at the University of Pennsylvania, Karikó got demoted. She was going backward.
“I thought of going somewhere else, or doing something else,” Karikó told Stat in 2020. “I also thought maybe I’m not good enough, not smart enough. I tried to imagine: Everything is here, and I just have to do better experiments.”
A tale of tenacity
Collaborating with Drew Weissman, a new professor at the University of Pennsylvania, in the late 1990s helped provide Karikó with the tenacity to continue. Weissman nurtured a goal of developing a vaccine against HIV-1, and saw mRNA as a potential way to do it.
“For the 20 years that we’ve worked together before anybody knew what RNA is, or cared, it was the two of us literally side by side at a bench working together,” Weissman said in an interview with Adam Smith of the Nobel Foundation.
In 2005, the duo made their 2023 Nobel Prize-winning breakthrough, detailing it in a relatively small journal, Immunity. (Their paper was rejected by larger journals, including Science and Nature.) They figured out that chemically modifying the nucleoside bases that make up mRNA allowed the molecule to slip past the body’s immune defenses. Karikó and Weissman followed up that finding by creating mRNA that’s more efficiently translated within cells, greatly boosting protein production. In 2020, scientists at Moderna and BioNTech (where Karikó worked from 2013 to 2022) rushed to craft vaccines against COVID, putting their methods to life-saving use.
The future of vaccines
Buoyed by the resounding success of mRNA vaccines, scientists are now hurriedly researching ways to use mRNA medicine against other infectious diseases, cancer, and genetic disorders. The now ubiquitous efforts stand in stark contrast to Karikó and Weissman’s previously unheralded struggles years ago as they doggedly worked to realize a shared dream that so many others shied away from. Katalin Karikó and Drew Weissman were brave enough to walk a scientific path that very well could have ended in a dead end, and for that, they absolutely deserve their 2023 Nobel Prize.
This article originally appeared on Big Think, home of the brightest minds and biggest ideas of all time.
How exactly does your DNA make you who you are?
It's because of epigenetics that identical twins can actually look different and develop different diseases.
Just as software developers don't write apps out of ones and zeros, the interesting parts of the human genome aren't written merely in As, Ts, Cs and Gs. Yes, these are the fundamental letters that make up our DNA and encode the proteins that make our cells function, but the story doesn't end there.
Our cells possess amazing abilities, like eating invading bacteria or patching over a wound, and these abilities require the coordinated action of hundreds, if not thousands, of proteins. Epigenetics, the study of gene expression, examines how multiple genes work at once to make these biological processes happen.
It's because of epigenetics that identical twins – who possess identical DNA -- can actually look different and develop different diseases. Their environments may influence the expression of their genes in unique ways. For example, a research study in mice found that maternal exposure to a chemical called bisphenol A (BPA) resulted in drastic differences between genetically identical offspring. BPA exposure increased the likelihood that a certain gene was turned on, which led to the birth of yellow mice who were prone to obesity. Their genetically identical siblings who were not exposed to BPA were thinner and born with brown fur.
These three mice are genetically identical. Epigenetic differences, however, result in vastly different phenotypes.
(© 1994 Nature Publishing Group, Duhl, D.)
This famous mouse experiment is just one example of how epigenetics may transform medicine in the coming years. By studying the way genes are turned on and off, and maybe even making those changes ourselves, scientists are beginning to approach diseases like cancer in a completely new way.
With few exceptions, most of the 1 trillion cells that make up your body contain the same DNA instructions as all the others. How does each cell in your body know what it is and what it has to do? One of the answers appears to lie in epigenetic regulation. Just as everyone at a company may have access to all the same files on the office Dropbox, the accountants will put different files on their desktop than the lawyers do.
Our cells prioritize DNA sequences in the same way, even storing entire chromosomes that aren't needed along the wall of the nucleus, while keeping important pieces of DNA in the center, where it is most accessible to be read and used. One of the ways our cells prioritize certain DNA sequences is through methylation, a process that inactivates large regions of genes without editing the underlying "file" itself.
As we learn more about epigenetics, we gain more opportunities to develop therapeutics for a broad range of human conditions, from cancer to metabolic disorders. Though there have not been any clinical applications of epigenetics to immune or metabolic diseases yet, cancer is one of the leading areas, with promising initial successes.
One of the challenges of cancer treatments is that different patients may respond positively or negatively to the same treatment. With knowledge of epigenetics, however, doctors could conduct diagnostic tests to identify a patient's specific epigenetic profile and determine the best treatment for him or her. Already, commercial kits are available that help doctors screen glioma patients for an epigenetic biomarker called MGMT, because patients with this biomarker have shown high rates of success with certain kinds of treatments.
Other epigenetic advances go beyond personalized screening to treatments targeting the mechanism of disease. Some epigenetic drugs turn on genes that help suppress tumors, while others turn on genes that reveal the identity of tumor cells to the immune system, allowing it to attack cancerous cells.
Direct, targeted control of your epigenome could allow doctors to reprogram cancerous or aging cells.
The study of epigenetics has also been fundamental to the field of aging research. The older you get, the more methylation marks your DNA carries, and this has led to the distinction between biological aging, or the state of your cells, and chronological aging, or how old you actually are.
Just as our DNA can get miscopied and accumulate mutations, errors in DNA methylation can lead to so-called "epimutations". One of the big hypotheses in aging research today is that the accumulation of these random epimutations over time is responsible for what we perceive as aging.
Studies thus far have been correlative - looking at several hundred sites of epigenetic modifications in a person's cell, scientists can now roughly discern the age of that person. The next set of advances in the field will come from learning what these epigenetic changes individually do by themselves, and if certain methylations are correlated with cellular aging. General diagnostic terms like "aging" could be replaced with "abnormal methylation at these specific locations," which would also open the door to new therapeutic targets.
Direct, targeted control of your epigenome could allow doctors to reprogram cancerous or aging cells. While this type of genetic surgery is not feasible just yet, current research is bringing that possibility closer. The Cas9 protein of genome-editing CRISPR/Cas9 fame has been fused with epigenome modifying enzymes to target epigenetic modifications to specific DNA sequences.
A therapeutic of this type could theoretically undo a harmful DNA methylation, but would also be competing with the cell's native machinery responsible for controlling this process. One potential approach around this problem involves making beneficial synthetic changes to the epigenome that our cells do not have the capacity to undo.
Also fueling this frontier is a new approach to understanding disease itself. Scientists and doctors are now moving beyond the "one defective gene = one disease" paradigm. Because lots of diseases are caused by multiple genes going haywire, epigenetic therapies could hold the key to new types of treatments by targeting multiple defective genes at once.
Scientists are still discovering which epigenetic modifications are responsible for particular diseases, and engineers are building new tools for epigenome editing. Given the proliferation of work in these fields within the last 10 years, we may see epigenetic therapeutics emerging within the next couple of decades.
Goodnight, Moon. Goodnight, Sky Advertisement.
Imagine enjoying a romantic night stargazing, cozying up for the evening – and you catch a perfectly timed ad for Outback Steakhouse.
Countries have sovereignty over their airspace, but the night sky itself is pretty much an open field.
That's the vision of StartRocket, a Russian startup planning to put well-lit advertisements into outer space. According to a recent interview, StartRocket says its first client is PepsiCo.
The Lowdown
Launching at twilight during the early morning or early evening, the ads will be on cubesats – 10 cm square metallic boxes traditionally used in space. The attached Mylar sails will reflect light from the rising or setting sun, making the ad appear like an "orbital billboard."
The advertisements will need all the solar power they can get: According to a 2016 report, 80 percent of the world and 99 percent of America and Europe experience light pollution at night. Showing advertisements in, say, Wyoming will be much easier than attracting attention in Midtown Manhattan – and risks adding a considerable amount of light pollution to an already overburdened night sky.
Next Up
The StartRocket advertising program is set to begin in 2021. The most recent rate is $20,000 for eight hours of advertising space.
But first, StartRocket has to win over consumers, regulators and space activists.
"I don't see it taking off now," says TED Fellow and University of Texas, Austin Associate Professor Dr. Moriba Jah. Jah is the creator of Astriagraph, an interactive tool to help monitor space junk orbiting Earth. "In general, the space community is anathema to advertisements from orbit to people on the ground… The global astronomy community will be fighting it tooth and nail."
Jah notes SpaceX's launch of 60 satellites last month. "Astronomers were up in arms since they are so bright, you can see them with the naked eye." It got to the point where Elon Musk had to defend himself to the astronomy community on Twitter.
Open Questions
Startups come and go, especially those that are looking for funding. StartRocket is in both categories. Frankly, it's unclear if the ads will actually launch two years from now.
Space advertisements are more likely to be the future for less regulated and financially strapped areas.
The regulatory hurdles are just as unknown. According to Jah, countries have sovereignty over their airspace (think planes, balloons and drones), but the night sky itself is pretty much an open field. This doesn't remove the political ramifications, though, and any American-based launches would have to contend with the FCC, since it regulates advertisements, and the FAA, since it regulates flight.
Carbon credits-style redemptions may help balance out the potential environmental and political damage done by sky ads. It isn't a coincidence that space pioneers Musk, Jeff Bezos, and Richard Branson succeeded at other ventures first, giving them considerably deep pockets to survive red tape – something StartRocket's team doesn't have at the moment.
Space advertisements are more likely to be the future for less regulated, financially strapped areas. Depending on how ad companies negotiate with the local governments, it's easy to picture Kolkata with an "Enjoy Coke" advertisement blaring during a Ganges sunset.
"In rural places, it would be like having another moon," Jah says. "People would say the rich are now taking the sky away from us."