One Day, There Might Be a Drug for a Broken Heart
For Tony Y., 37, healing from heartbreak is slow and incomplete. Each of several exes is associated with a cluster of sore memories. Although he loves the Blue Ridge Mountains, he can't visit because they remind him of a romantic holiday years ago.
If a new drug made rejections less painful, one expert argues, it could relieve or even prevent major depression.
Like some 30 to 40 percent of depressed patients, Tony hasn't had success with current anti-depressants. One day, psychiatrists may be able to offer him a new kind of opioid, an anti-depressant for people suffering from the cruel pain of rejection.
A Surprising Discovery
As we move through life, rejections -- bullying in school, romantic breakups, and divorces -- are powerful triggers to depressive episodes, observes David Hsu, a neuroscientist at Stony Brook University School of Medicine in Long Island, New York. If a new drug made them less painful, he argues, it could relieve or even prevent major depression.
Our bodies naturally produce opioids to soothe physical pain, and opioid drugs like morphine and oxycodone work by plugging into the same receptors in our brains. The same natural opioids may also respond to emotional hurts, and painkillers can dramatically affect mood. Today's epidemic of opioid abuse raises the question: How many lives might have been saved if we had a safe, non-addictive option for medicating emotional pain?
Already one anti-depressant, tianeptine, locks into the mu opioid receptor, the target of morphine and oxycodone. Scientists knew that tianeptine, prescribed in some countries in Europe, Asia, and Latin America, acted differently than the most common anti-depressants in use today, which affect the levels of other brain chemicals, serotonin and norepinephrine. But the discovery in 2014 that tianeptine tapped the mu receptor was a "huge surprise," says co-author Jonathan Javitch, chief of the Division of Molecular Therapeutics at Columbia University.
The news arrived when scientists' basic understanding of depression is in flux; viewed biologically, it may cover several disorders. One of them could hinge on opioids. It's possible that some people release fewer opioids naturally or that the receptors for it are less effective.
Javitch has launched a startup, Kures, to make tianeptine more effective and convenient and to find other opioid-modulators. That may seem quixotic in the midst of an opioid epidemic, but tianeptine doesn't create dependency in low, prescription doses and has been used safely around the world for decades. To identify likely patients, cofounder Andrew Kruegel is looking for ways to "segment the depressed population by measures that have to do with opioid release," he says.
Is Emotional Pain Actually "Pain"?
No one imagines that the pain from rejection or loss is the same as pain from a broken leg. Physical pain is two perceptions—a sensory perception and an "affective" one, which makes pain unpleasant.
Exploration of an overlap between physical and what research psychologists call "social pain" has heated up since the mid-2000s.
The sensory perception, processed by regions of the brain called the primary and secondary somatosensory cortices and the posterior insula, tells us whether the pain is in your arm or your leg, how strong it is and whether it is a sting, ache, or has some other quality. The affective perception, in another part of the brain called the dorsal anterior cingulate cortex and the anterior insula, tells us that we want the pain to stop, fast! When people with lesions in the latter areas experience a stimulus that ordinarily would be painful, they don't mind it.
Science now suggests that emotional pain arises in the affective brain circuits. Exploration of an overlap between physical and what research psychologists call "social pain" has heated up since the mid-2000s. Animal evidence goes back to the 1970s: babies separated from their mothers showed less distress when given morphine, and more if dosed with naloxone, the opioid antagonist.
Parents, of course, face the question of whether Baby feels alone or wet whenever she howls. And the answer is: both hurt. Being abandoned is the ultimate threat in our early life, and it makes sense that a brain system to monitor social threats would piggyback upon an existing system for pain. Piggybacking is a feature of evolution. An ancestor who felt "hurt" when threatened by rejection might learn adaptive behavior: to cooperate or run.
In 2010, a large multi-university team led by Nathan DeWall at the University of Kentucky, reported that acetaminophen (Tylenol) reduced social pain. Undergraduates took 500 mg of acetaminophen upon awakening and at bedtime every day for three weeks and reported nightly about their day using a previously-tested "Hurt Feelings Scale," rating how strongly they agreed with questions like, "Today, being teased hurt my feelings."
Over the weeks, their reports of hurt feelings steadily declined, while remaining flat in a control group that took placebos. In a second experiment, the research group showed that, compared to controls, people who had taken acetaminophen for three weeks showed less brain activity in the affective brain circuits while they experienced rejection during a virtual ball-tossing game. Later, Hsu's brain scan research supported the idea that rejection triggers the mu opioid receptor system, which normally provides pain-dampening opioids.
More evidence comes from nonhuman primates with lesions in the affective circuits: They cry less when separated from caregivers or social groups.
Heartbreak seems to lie in those regions: women with major depression are more hurt by romantic rejection than normal controls are and show more activity in those areas in brain scans, Hsu found. Also, factors that make us more vulnerable to rejection -- like low self-esteem -- are linked to more activity in the key areas, studies show.
The trait "high rejection sensitivity" increases your risk of depression more than "global neuroticism" does, Hsu observes, and predicts a poor recovery from depression. Pain sensitivity is another clue: People with a gene linked to it seem to be more hurt by social exclusion. Once you're depressed, you become more rejection-sensitive and prone to pain—a classic bad feedback loop.
"Ideally, we'd have biomarkers to distinguish when loss becomes complicated grief and then depression, and we might prevent the transition with a drug."
Helen Mayberg, a neurologist renowned for her study of brain circuits in depression, sees, as Hsu does, the possibility of preventing depressions. "Nobody would suggest we treat routine bad social pain with drugs. But it is true that in susceptible people, losing a partner, for example, can lead to a full-blown depression," says Mayberg, who is the founding director of The Center for Advanced Circuit Therapeutics at Mount Sinai's Icahn School of Medicine in New York City. "Ideally, we'd have biomarkers to distinguish when loss becomes complicated grief and then depression, and we might prevent the transition with a drug. It would be like taking medication when you feel the warning symptoms of a headache to prevent a full-blown migraine."
A Way Out of the Opioid Crisis?
The exploration of social pain should lead us to a deeper understanding of pain, beyond the sharp distinctions between "physical" and "psychological." Finding our way out of the current crisis may require that deeper understanding. About half of the people with opioid prescriptions have mental health disorders. "I expect there are a lot of people using street opioids—heroin or prescriptions purchased from others--to self-medicate psychological pain," Kreugel says.
What we may need, he suggests, is "a new paradigm for using opioids in psychiatry: low, sub-analgesic, sub-euphoric dosing." But so far it hasn't been easy. Investors don't flock to fund psychiatric drugs and in 2018, the word opioid is poison.
As for Tony Y., he's struggled for three years to recover from his most serious relationship. "Driving around highways looking at exit signs toward places we visited together sometimes fills me with unbearable anguish," he admits. "And because we used to do so much bird watching together, sometimes a mere glimpse of a random bird sets me off." He perks up at the idea of a heartbreak drug. "If the side effects didn't seem bad, I would consider it, absolutely."
Are the gains from gain-of-function research worth the risks?
Scientists have long argued that gain-of-function research, which can make viruses and other infectious agents more contagious or more deadly, was necessary to develop therapies and vaccines to counter the pathogens in case they were used for biological warfare. As the SARS-CoV-2 origins are being investigated, one prominent theory suggests it had leaked from a biolab that conducted gain-of-function research, causing a global pandemic that claimed nearly 6.9 million lives. Now some question the wisdom of engaging in this type of research, stating that the risks may far outweigh the benefits.
“Gain-of-function research means genetically changing a genome in a way that might enhance the biological function of its genes, such as its transmissibility or the range of hosts it can infect,” says George Church, professor of genetics at Harvard Medical School. This can occur through direct genetic manipulation as well as by encouraging mutations while growing successive generations of micro-organism in culture. “Some of these changes may impact pathogenesis in a way that is hard to anticipate in advance,” Church says.
In the wake of the global pandemic, the pros and cons of gain-of-function research are being fiercely debated. Some scientists say this type of research is vital for preventing future pandemics or for preparing for bioweapon attacks. Others consider it another disaster waiting to happen. The Government Accounting Office issued a report charging that a framework developed by the U.S. Department of Health & Human Services (HHS) provided inadequate oversight of this potentially deadly research. There’s a movement to stop it altogether. In January, the Viral Gain-of-Function Research Moratorium Act (S. 81) was introduced into the Senate to cease awarding federal research funding to institutions doing gain-of-function studies.
While testifying before the House COVID Origins Select Committee on March 8th, Robert Redfield, former director of the U.S. Centers for Disease Control and Prevention, said that COVID-19 may have resulted from an accidental lab leak involving gain-of-function research. Redfield said his conclusion is based upon the “rapid and high infectivity for human-to-human transmission, which then predicts the rapid evolution of new variants.”
“It is a very, very, very small subset of life science research that could potentially generate a potential pandemic pathogen,” said Gerald Parker, associate dean for Global One Health at Texas A&M University.
“In my opinion,” Redfield continues, “the COVID-19 pandemic presents a case study on the potential dangers of such research. While many believe that gain-of-function research is critical to get ahead of viruses by developing vaccines, in this case, I believe that was the exact opposite.” Consequently, Redfield called for a moratorium on gain-of-function research until there is consensus about the value of such risky science.
What constitutes risky?
The Federal Select Agent Program lists 68 specific infectious agents as risky because they are either very contagious or very deadly. In order to work with these 68 agents, scientists must register with the federal government. Meanwhile, research on deadly pathogens that aren’t easily transmitted, or pathogens that are quite contagious but not deadly, can be conducted without such oversight. “If you’re not working with select agents, you’re not required to register the research with the federal government,” says Gerald Parker, associate dean for Global One Health at Texas A&M University. But the 68-item list may not have everything that could possibly become dangerous or be engineered to be dangerous, thus escaping the government’s scrutiny—an issue that new regulations aim to address.
In January 2017, the White House Office of Science and Technology Policy (OSTP) issued additional guidance. It required federal departments and agencies to follow a series of steps when reviewing proposed research that could create, transfer, or use potential pandemic pathogens resulting from the enhancement of a pathogen’s transmissibility or virulence in humans.
In defining risky pathogens, OSTP included viruses that were likely to be highly transmissible and highly virulent, and thus very deadly. The Proposed Biosecurity Oversight Framework for the Future of Science, outlined in 2023, broadened the scope to require federal review of research “that is reasonably anticipated to enhance the transmissibility and/or virulence of any pathogen” likely to pose a threat to public health, health systems or national security. Those types of experiments also include the pathogens’ ability to evade vaccines or therapeutics, or diagnostic detection.
However, Parker says that dangers of generating a pandemic-level germ are tiny. “It is a very, very, very small subset of life science research that could potentially generate a potential pandemic pathogen.” Since gain-of-function guidelines were first issued in 2017, only three such research projects have met those requirements for HHS review. They aimed to study influenza and bird flu. Only two of those projects were funded, according to the NIH Office of Science Policy. For context, NIH funded approximately 11,000 of the 54,000 grant applications it received in 2022.
Guidelines governing gain-of-function research are being strengthened, but Church points out they aren’t ideal yet. “They need to be much clearer about penalties and avoiding positive uses before they would be enforceable.”
What do we gain from gain-of-function research?
The most commonly cited reason to conduct gain-of-function research is for biodefense—the government’s ability to deal with organisms that may pose threats to public health.
In the era of mRNA vaccines, the advance preparedness argument may be even less relevant.
“The need to work with potentially dangerous viruses is central to our preparedness,” Parker says. “It’s essential that we know and understand the basic biology, microbiology, etc. of some of these dangerous pathogens.” That includes increasing our knowledge of the molecular mechanisms by which a virus could become a sustained threat to humans. “Knowing that could help us detect [risks] earlier,” Parker says—and could make it possible to have medical countermeasures, like vaccines and therapeutics, ready.
Most vaccines, however, aren’t affected by this type of research. Essentially, scientists hope they will never need to use it. Moreover, Paul Mango, HSS former deputy chief of staff for policy, and author of the 2022 book Warp Speed, says he believes that in the era of mRNA vaccines, the advance preparedness argument may be even less relevant. “That’s because these vaccines can be developed and produced in less than 12 months, unlike traditional vaccines that require years of development,” he says.
Can better oversight guarantee safety?
Another situation, which Parker calls unnecessarily dangerous, is when regulatory bodies cannot verify that the appropriate biosafety and biosecurity controls are in place.
Gain-of-function studies, Parker points out, are conducted at the basic research level, and they’re performed in high-containment labs. “As long as all the processes, procedures and protocols are followed and there’s appropriate oversight at the institutional and scientific level, it can be conducted safely.”
Globally, there are 69 Biosafety Level 4 (BSL4) labs operating, under construction or being planned, according to recent research from King’s College London and George Mason University for Global BioLabs. Eleven of these 18 high-containment facilities that are planned or under construction are in Asia. Overall, three-quarters of the BSL4 labs are in cities, increasing public health risks if leaks occur.
Researchers say they are confident in the oversight system for BSL4 labs within the U.S. They are less confident in international labs. Global BioLabs’ report concurs. It gives the highest scores for biosafety to industrialized nations, led by France, Australia, Canada, the U.S. and Japan, and the lowest scores to Saudi Arabia, India and some developing African nations. Scores for biosecurity followed similar patterns.
“There are no harmonized international biosafety and biosecurity standards,” Parker notes. That issue has been discussed for at least a decade. Now, in the wake of SARS and the COVID-19 pandemic, scientists and regulators are likely to push for unified oversight standards. “It’s time we got serious about international harmonization of biosafety and biosecurity standards and guidelines,” Parker says. New guidelines are being worked on. The National Science Advisory Board for Biosecurity (NSABB) outlined its proposed recommendations in the document titled Proposed Biosecurity Oversight Framework for the Future of Science.
The debates about whether gain-of-function research is useful or poses unnecessary risks to humanity are likely to rage on for a while. The public too has a voice in this debate and should weigh in by communicating with their representatives in government, or by partaking in educational forums or initiatives offered by universities and other institutions. In the meantime, scientists should focus on improving the research regulations, Parker notes. “We need to continue to look for lessons learned and for gaps in our oversight system,” he says. “That’s what we need to do right now.”
The rise of remote work is a win-win for people with disabilities and employers
Disability advocates see remote work as a silver lining of the pandemic, a win-win for adults with disabilities and the business world alike.
Any corporate leader would jump at the opportunity to increase their talent pool of potential employees by 15 percent, with all these new hires belonging to an underrepresented minority. That’s especially true given tight labor markets and CEO desires to increase headcount. Yet, too few leaders realize that people with disabilities are the largest minority group in this country, numbering 50 million.
Some executives may dread the extra investments in accommodating people’s disabilities. Yet, providing full-time remote work could suffice, according to a new study by the Economic Innovation Group think tank. The authors found that the employment rate for people with disabilities did not simply reach the pre-pandemic level by mid-2022, but far surpassed it, to the highest rate in over a decade. “Remote work and a strong labor market are helping [individuals with disabilities] find work,” said Adam Ozimek, who led the research and is chief economist at the Economic Innovation Group.
Disability advocates see this development as a silver lining of the pandemic, a win-win for adults with disabilities and the business world alike. For decades before the pandemic, employers had refused requests from workers with disabilities to work remotely, according to Thomas Foley, executive director of the National Disability Institute. During the pandemic, "we all realized that...many of us could work remotely,” Foley says. “[T]hat was disproportionately positive for people with disabilities."
Charles-Edouard Catherine, director of corporate and government relations for the National Organization on Disability, said that remote-work options had been advocated for many years to accommodate disabilities. “It’s a little frustrating that for decades corporate America was saying it’s too complicated, we’ll lose productivity, and now suddenly it’s like, sure, let’s do it.”
The pandemic opened doors for people with disabilities
Early in the pandemic, employment rates dropped for everyone, including people with disabilities, according to Ozimek’s research. However, these rates recovered quickly. In the second quarter of 2022, people with disabilities aged 25 to 54, the prime working age, are 3.5 percent more likely to be employed, compared to before the pandemic.
What about people without disabilites? They are still 1.1 percent less likely to be employed.
These numbers suggest that remote work has enabled a substantial number of people with disabilities to find and retain employment.
“We have a last-in, first-out labor market, and [people with disabilities] are often among the last in and the first out,” Ozimek says. However, this dynamic has changed, with adults with disabilities seeing employment rates recover much faster. Now, the question is whether the new trend will endure, Ozimek adds. “And my conclusion is that not only is it a permanent thing, but it’s going to improve.”
Gene Boes, president and chief executive of the Northwest Center, a Seattle organization that helps people with disabilities become more independent, confirms this finding. “The new world we live in has opened the door a little bit more…because there’s just more demand for labor.”
Long COVID disabilities put a premium on remote work
Remote work can help mitigate the impact of long COVID. The U.S. Centers for Disease Control and Prevention reports that about 19 percent of those who had COVID developed long COVID. Recent Census Bureau data indicates that 16 million working age Americans suffer from it, with economic costs estimated at $3.7 trillion.
Certainly, many of these so-called long-haulers experience relatively mild symptoms - such as loss of smell - which, while troublesome, are not disabling. But other symptoms are serious enough to be disabilities.
According to a recent study from the Federal Reserve Bank of Minneapolis, about a quarter of those with long COVID changed their employment status or working hours. That means long COVID was serious enough to interfere with work for 4 million people. For many, the issue was serious enough to qualify them as disabled.
Indeed, the Federal Reserve Bank of New York found in a just-released study that the number of individuals with disabilities in the U.S. grew by 1.7 million. That growth stemmed mainly from long COVID conditions such as fatigue and brain fog, meaning difficulties with concentration or memory, with 1.3 million people reporting an increase in brain fog since mid-2020.
Many had to drop out of the labor force due to long COVID. Yet, about 900,000 people who are newly disabled have managed to continue working. Without remote work, they might have lost these jobs.
For example, a software engineer at one of my client companies has struggled with brain fog related to long COVID. With remote work, this employee can work during the hours when she feels most mentally alert and focused, even if that means short bursts of productivity throughout the day. With flexible scheduling, she can take rests, meditate, or engage in activities that help her regain focus and energy. Without the need to commute to the office, she can save energy and time and reduce stress, which is crucial when dealing with brain fog.
In fact, the author of the Federal Reserve Bank of New York study notes that long COVID can be considered a disability under the Americans with Disability Act, depending on the specifics of the condition. That means the law can require private employers with fifteen or more staff, as well as government agencies, to make reasonable accommodations for those with long COVID. Richard Deitz, the author of this study, writes in the paper that “telework and flexible scheduling are two accommodations that can be particularly beneficial for workers dealing with fatigue and brain fog.”
The current drive to return to the office, led by many C-suite executives, may need to be reconsidered in light of legal and HR considerations. Arlene S. Kanter, director of the disability law and policy program at the Syracuse University College of Law, said that the question should depend on whether people with disabilities can perform their work well at home, as they did during Covid outbreaks. “[T]hen people with disabilities, as a matter of accommodation, shouldn’t be denied that right,” Kanter said.
Diversity benefits
But companies shouldn’t need to worry about legal regulations. It simply makes dollars and sense to expand their talent pool by 15% of an underrepresented minority. After all, extensive research shows that improving diversity boosts both decision-making and financial performance.
Companies that are offering more flexible work options have already gained significant benefits in terms of diverse hires. In its efforts to adapt to the post-pandemic environment, Meta, the owner of Facebook and Instagram, decided to offer permanent fully remote work options to its entire workforce. And according to Meta chief diversity officer Maxine Williams, the candidates who accepted job offers for remote positions were “substantially more likely” to come from diverse communities: people with disabilities, Black, Hispanic, Alaskan Native, Native American, veterans, and women. The numbers bear out these claims: people with disabilities increased from 4.7 to 6.2 percent of Meta’s employees.
Having consulted for 21 companies to help them transition to hybrid work arrangements, I can confirm that Meta’s numbers aren’t a fluke. The more my clients proved willing to offer remote work, the more staff with disabilities they recruited - and retained. That includes employees with mobility challenges. But it also includes employees with less visible disabilities, such as people with long COVID and immunocompromised people who feel reluctant to put themselves at risk of getting COVID by coming into the office.
Unfortunately, many leaders fail to see the benefits of remote work for underrepresented groups, such as those with disabilities. Some even say the opposite is true, with JP Morgan CEO Jamie Dimon claiming that returning to the office will aid diversity.
What explains this poor executive decision making? Part of the answer comes from a mental blindspot called the in-group bias. Our minds tend to favor and pay attention to the concerns of those in the group of people who seem to look and think like us. Dimon and other executives without disabilities don’t perceive people with disabilities to be part of their in-group. They thus are blind to the concerns of those with disabilities, which leads to misperceptions such as Dimon’s that returning to the office will aid diversity.
In-group bias is one of many dangerous judgment errors known as cognitive biases. They impact decision making in all life areas, ranging from the future of work to relationships.
Another relevant cognitive bias is the empathy gap. This term refers to our difficulty empathizing with those outside of our in-group. The lack of empathy combines with the blindness from the in-group bias, causing executives to ignore the feelings of employees with disabilities and prospective hires.
Omission bias also plays a role. This dangerous judgment error causes us to perceive failure to act as less problematic than acting. Consequently, executives perceive a failure to support the needs of those with disabilities as a minor matter.
Conclusion
The failure to empower people with disabilities through remote work options will prove costly to the bottom lines of companies. Not only are limiting their talent pool by 15 percent, they’re harming their ability to recruit and retain diverse candidates. And as their lawyers and HR departments will tell them, by violating the ADA, they are putting themselves in legal jeopardy.
By contrast, companies like Meta - and my clients - that offer remote work opportunities are seizing a competitive advantage by recruiting these underrepresented candidates. They’re lowering costs of labor while increasing diversity. The future belongs to the savvy companies that offer the flexibility that people with disabilities need.