Novel Technologies Could Make Coronavirus Vaccines More Stable for Worldwide Shipping
Ssendi Bosco has long known to fear the rainy season. As deputy health officer of Mubende District, a region in Central Uganda, she is only too aware of the threat that heavy storms can pose to her area's fragile healthcare facilities.
In early October, persistent rain overwhelmed the power generator that supplies electricity to most of the region, causing a blackout for three weeks. The result was that most of Mubende's vaccine supplies against diseases such as tuberculosis, diphtheria, and polio went to waste. "The vaccines need to be constantly refrigerated, so the generator failing means that most of them are now unusable," she says.
This week, the global fight against the coronavirus pandemic received a major boost when Pfizer and their German partner BioNTech released interim results showing that their vaccine has proved more than 90 percent effective at preventing participants in their clinical trial from getting COVID-19.
But while Pfizer has already signed deals to supply the vaccine to the U.S., U.K., Canada, Japan and the European Union, Mubende's recent plight provides an indication of the challenges that distributors will face when attempting to ship a coronavirus vaccine around the globe, particularly to low-income nations.
Experts have estimated that somewhere between 12 billion and 15 billion doses will be needed to immunize the world's population against COVID-19, a staggering scale, and one that has never been attempted before. "The logistics of distributing COVID-19 vaccines have been described as one of the biggest challenges in the history of mankind," says Göran Conradson, managing director of Swedish vaccine manufacturer Ziccum.
But even these estimates do not take into account the potential for vaccine spoilage. Every year, the World Health Organization estimates that over half of the world's vaccines end up being wasted. This happens because vaccines are fragile products. From the moment they are made, to the moment they are administered, they have to be kept within a tightly controlled temperature range. Throughout the entire supply chain – transportation to an airport, the flight to another country, unloaded, distribution via trucks to healthcare facilities, and storage – they must be refrigerated at all times. This is known as the cold chain, and one tiny slip along the way means the vaccines are ruined.
"It's a chain, and any chain is only as strong as its weakest link," says Asel Sartbaeva, a chemist working on vaccine technologies at the University of Bath in the U.K.
For COVID-19, the challenge is even greater because some of the leading vaccine candidates need to be kept at ultracold temperatures. Pfizer's vaccine, for example, must be kept at -70 degrees Celsius, the kind of freezer capabilities rarely found outsides of specialized laboratories. Transporting such a vaccine across North America and Europe will be difficult enough, but supplying it to some of the world's poorest nations in Asia, Africa and South America -- where only 10 percent of healthcare facilities have reliable electricity -- might appear virtually impossible.
But technology may be able to come to the rescue.
Making Vaccines Less Fragile
Just as the world's pharmaceutical companies have been racing against the clock to develop viable COVID-19 vaccine candidates, scientists around the globe have been hastily developing new technologies to try and make vaccines less fragile. Some approaches involve various chemicals that can be added to the vaccine to make them far more resilient to temperature fluctuations during transit, while others focus on insulated storage units that can maintain the vaccine at a certain temperature even if there is a power outage.
Some of these concepts have already been considered for several years, but before COVID-19 there was less of a commercial incentive to bring them to market. "We never felt that there is a need for an investment in this area," explains Sam Kosari, a pharmacist at the University of Canberra, who researches the vaccine cold chain. "Some technologies were developed then to assist with vaccine transport in Africa during Ebola, but since that outbreak was contained, there hasn't been any serious initiative or reward to develop this technology further."
In her laboratory at the University of Bath, Sartbaeva is using silica - the main constituent of sand – to encase the molecular components within a vaccine. Conventional vaccines typically contain protein targets from the virus, which the immune system learns to recognize. However, when they are exposed to temperature changes, these protein structures degrade, and lose their shape, making the vaccine useless. Sartbaeva compares this to how an egg changes its shape and consistency when it is boiled.
When silica is added to a vaccine, it molds to each protein, forming little protective cages around them, and thus preventing them from being affected by temperature changes. "The whole idea is that if we can create a shell around each protein, we can protect it from physically unravelling which is what causes the deactivation of the vaccine," she says.
Other scientists are exploring similar methods of making vaccines more resilient. Researchers at the Jenner Institute at the University of Oxford recently conducted a clinical trial in which they added carbohydrates to a dengue vaccine, to assess whether it became easier to transport.
Both research groups are now hoping to collaborate with the COVID-19 vaccine candidates being developed by AstraZeneca and Imperial College, assuming they become available in 2021.
"It's good we're all working on this big problem, as different methods could work better for different types of COVID-19 vaccines," says Sartbaeva. "I think it will be needed."
Next-Generation Vaccine Technology
While these different technologies could be utilized to try and protect the first wave of COVID-19 vaccines, efforts are also underway to develop completely new methods of vaccination. Much of this research is still in its earliest stages, but it could yield a second generation of COVID-19 vaccine candidates in 2022 and beyond.
"After the first round of mass vaccination, we could well observe regional outbreaks of the disease appearing from time to time in the coming years," says Kosari. "This is the time where new types of vaccines could be helpful."
One novel method being explored by Ziccum and others is dry powder vaccines. The idea is to spray dry the final vaccine into a powder form, where it is more easily preserved and does not require any special cooling while being transported or stored. People then receive the vaccine by inhaling it, rather than having it injected into their bloodstream.
Conradson explains that the concept of dry powder vaccines works on the same principle as dried food products. Because there is no water involved, the vaccine's components are far less affected by temperature changes. "It is actually the water that leads to the destruction of potency of a vaccine when it gets heated," he says. "We're looking to develop a dry powder vaccine for COVID-19 but this will be a second-generation vaccine. At the moment there are more than 200 first-generation candidates, all of which are using conventional technologies due to the timeframe pressures, which I think was the correct decision."
Dry powder COVID-19 vaccines could also be combined with microneedle patches, to allow people to self-administer the vaccine themselves in their own home. Microneedles are miniature needles – measured in millionths of a meter – which are designed to deliver medicines through the skin with minimal pain. So far, they have been used mainly in cosmetic products, but many scientists are working to use them to deliver drugs or vaccines.
At Georgia Institute of Technology in Atlanta, Mark Prausnitz is leading a couple of projects looking at incorporating COVID-19 vaccines into microneedle patches with the hope of running some early-stage clinical trials over the next couple of years. "The advantage is that they maintain the vaccine in a stable, dry state until it dissolves in the skin," he explains.
Prausnitz and others believe that once the first generation of COVID-19 vaccines become available, biotech and pharmaceutical companies will show more interest in adapting their products so they can be used in a dried form or with a microneedle patch. "There is so much pressure to get the COVID vaccine out that right now, vaccine developers are not interested in incorporating a novel delivery method," he says. "That will have to come later, once the pressure is lessened."
The Struggle of Low-Income Nations
For low-income nations, time will only tell whether technological advancements can enable them to access the first wave of licensed COVID-19 vaccines. But reports already suggest that they are in danger of becoming an afterthought in the race to procure vaccine supplies.
While initiatives such as COVAX are attempting to make sure that vaccine access is equitable, high and middle-income countries have already inked deals to secure 3.8 billion doses, with options for another 5 billion. One particularly sobering study by the Duke Global Health Innovation Center has suggested that such hoarding means many low-income nations may not receive a vaccine until 2024.
For Bosco and the residents of Mubende District in Uganda, all they can do is wait. In the meantime, there is a more pressing problem: fixing their generators. "We hope that we can receive a vaccine," she says. "But the biggest problem will be finding ways to safely store it. Right now we cannot keep any medicines or vaccines in the conditions they need, because we don't have the funds to repair our power generators."
How to have a good life, based on the world's longest study of happiness
What makes for a good life? Such a simple question, yet we don't have great answers. Most of us try to figure it out as we go along, and many end up feeling like they never got to the bottom of it.
Shouldn't something so important be approached with more scientific rigor? In 1938, Harvard researchers began a study to fill this gap. Since then, they’ve followed hundreds of people over the course of their lives, hoping to identify which factors are key to long-term satisfaction.
Eighty-five years later, the Harvard Study of Adult Development is still going. And today, its directors, the psychiatrists Bob Waldinger and Marc Shulz, have published a book that pulls together the study’s most important findings. It’s called The Good Life: Lessons from the World’s Longest Scientific Study of Happiness.
In this podcast episode, I talked with Dr. Waldinger about life lessons that we can mine from the Harvard study and his new book.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
More background on the study
Back in the 1930s, the research began with 724 people. Some were first-year Harvard students paying full tuition, others were freshmen who needed financial help, and the rest were 14-year-old boys from inner city Boston – white males only. Fortunately, the study team realized the error of their ways and expanded their sample to include the wives and daughters of the first participants. And Waldinger’s book focuses on the Harvard study findings that can be corroborated by evidence from additional research on the lives of people of different races and other minorities.
The study now includes over 1,300 relatives of the original participants, spanning three generations. Every two years, the participants have sent the researchers a filled-out questionnaire, reporting how their lives are going. At five-year intervals, the research team takes a peek their health records and, every 15 years, the psychologists meet their subjects in-person to check out their appearance and behavior.
But they don’t stop there. No, the researchers factor in multiple blood samples, DNA, images from body scans, and even the donated brains of 25 participants.
Robert Waldinger, director of the Harvard Study of Adult Development.
Katherine Taylor
Dr. Waldinger is Clinical Professor of Psychiatry at Harvard Medical School, in addition to being Director of the Harvard Study of Adult Development. He got his M.D. from Harvard Medical School and has published numerous scientific papers he’s a practicing psychiatrist and psychoanalyst, he teaches Harvard medical students, and since that is clearly not enough to keep him busy, he’s also a Zen priest.
His book is a must-read if you’re looking for scientific evidence on how to design your life for more satisfaction so someday in the future you can look back on it without regret, and this episode was an amazing conversation in which Dr. Waldinger breaks down many of the cliches about the good life, making his advice real and tangible. We also get into what he calls “side-by-side” relationships, personality traits for the good life, and the downsides of being too strict about work-life balance.
Show links
- Bob Waldinger
- Waldinger's book, The Good Life: Lessons from the World's Longest Scientific Study of Happiness
- The Harvard Study of Adult Development
- Waldinger's Ted Talk
- Gallup report finding that people with good friends at work have higher engagement with their jobs
- The link between relationships and well-being
- Those with social connections live longer
The Friday Five: A new blood test to detect Alzheimer's
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on scientific creativity and progress to give you a therapeutic dose of inspiration headed into the weekend.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the promising studies covered in this week's Friday Five:
- A blood test to detect Alzheimer's
- War vets can take their psychologist wherever they go
- Does intermittent fasting affect circadian rhythms?
- A new year's resolution for living longer
- 3-D printed eyes?