One of the World’s Most Hated Plants Is Becoming a Public Health Rock Star
The recent Ebola virus outbreak in the Democratic Republic of Congo has refocused attention on the vaccine and treatment prospects for the highly contagious and deadly disease. As of late May, more than 7,500 doses of an experimental vaccine made by Merck Pharmaceuticals had been shipped to the beleaguered African nation, according to a World Health Organization press release.
Research was focused on the production of antibodies and vaccines in a novel manufacturing system: the tobacco plant.
Meanwhile, Ebola treatments were also sent. One of these, ZMapp, was successfully used to treat two American missionaries in Liberia in 2014. Charles Arntzen, who helped develop the treatment, calls that moment the highlight of his career: "It started in a lab as a fanciful idea that needed to be validated. In ten years, it was being used and people went from almost dead to almost recovered."
His initial research was focused on the production of antibodies and vaccines in a novel manufacturing system. That system was the tobacco plant—not the smoking variety, or nicotiana tabacum. But rather, a distant cousin called nicotiana benthamiana, which is native to Australia, where it grows abundantly.
ZMapp is made from the plant, as are other therapeutics and vaccines. Indeed, the once-maligned plant family has turned its image upside down in the public health world, now holding promise to prevent and treat many conditions.
Cheap, easy and plentiful
Research on the tobacco plant's medicinal potential goes back a few decades. In the early 1990s, research on plants as vaccine production platforms was just beginning. "We wanted to make a lower-cost vaccine manufacturing system to be used in developing countries to broaden our manufacturing base in the developing world," said Arntzen, who is the founding director of the Biodesign Center for Immunotherapy, Vaccines and Virotherapy at Arizona State University. "There was and still is a shortage of vaccines in the poorest countries."
"I've got a list of about fifty vaccines that should be made in tobacco."
Initially, research focused on food plants: bananas, tomatoes, and potatoes. While these efforts were successful, they were stymied by the "anti-GMO food establishment," Arntzen said. "I didn't want to spend my time fighting." So, they switched to the tobacco plant.
"I've got a list of about fifty vaccines that should be made in tobacco," said Denis Murphy, professor of biotechnology at the University of South Wales. "We know a lot about how to express genes in tobacco and get it made."
Unlike egg-based vaccines, which require a clean, sterile laboratory to make, and can therefore be an expensive process, Murphy said, tobacco-based vaccines are relatively cheap to make. The process is simple: Three weeks after being planted, the plants are dipped into a liquid containing proteins from the given virus. The plants grow the proteins for another week and then are harvested and chopped up. The green liquid that results is the vaccine, which is purified and then bottled up in precise doses.
"The tobacco plant doesn't seem to mind making all this foreign protein," Murphy added. "The plants will stay alive and look okay, and they will be full of vaccine protein. If you did this with an animal, you'd probably kill it."
Still, there are certain challenges to producing tobacco-based vaccines, particularly in the developing world, said Murphy, who is also a biotech consultant for the Food and Agricultural Organization of the United Nations.
"The purification process of the vaccine protein from leaves is still something for which you need a specialized lab. You couldn't have that in the Congo," he said. Security is another concern. "Someone could steal the plant and grow it themselves as a pirate version."
Even birds could be the culprit for tobacco plant theft. "What if a bird came and started eating the leaves? You might want netting or greenhouse growing. That can be much more problematic in a developing country."
While the ZMapp treatment for Ebola is produced from tobacco, efforts to develop a vaccine this way have not proved fruitful so far. (Merck's Ebola vaccine is made from livestock.) "Our tobacco-based vaccine would require three doses for a full effect, while the vaccine made by Merck may only require a single dose," Arntzen said. "Having to give three doses, over about a month, makes the tobacco-made vaccine much more cumbersome and expensive to deliver." Yet a tobacco-derived vaccine for another newsworthy illness is in the works.
On the frontier of a flu vaccine
Quebec City-based biopharmaceutical company Medicago is using a novel technique to make a flu vaccine with tobacco. This offers several advantages over the current method of developing the vaccine from eggs.
First of all, the production is quicker: five to six weeks, versus four to six months, which means that researchers can wait to identify the circulating flu strain for the upcoming season, rather than guess and risk being wrong.
Also, with tobacco, developers can use something called virus-like particles, instead of the actual flu virus.
"We hope to be on the market by the 2020/21 flu season."
"They have the structure of the flu virus, but not its full genetic code, so the virus doesn't replicate," said Anne Shiraishi, Medicago's communications manager. That's a big deal because the flu is a rapidly mutating virus, and traditional egg-based vaccines encourage those mutations – which wind up making the vaccines less effective.
This problem happens because the flu virus mutates a key protein to better attach to receptors in bird cells, but in humans, this mutation won't trigger an effective immune response, according to a Medicago fact sheet. That's why some people who have been vaccinated still get the flu. Indeed, the 2017 flu season had the lowest vaccine effectiveness record ever for H3N2 at 10 percent in the Southern Hemisphere, and 0 percent effective in the EU and UK in people over age 65. At least theoretically, their tobacco-derived flu vaccine could be far more successful, since no such mutations occur with the virus-like particles.
Last year, Medicago, which is 40 percent owned by cigarette company Philip Morris, began a phase 3 trial of the flu vaccine with 10,000 subjects in five countries: half are getting the vaccine, and half are getting a placebo. "We hope to announce really good results this fall," Shiraishi said. "We hope to be on the market by the 2020/21 flu season."
They're also preparing phase I trials for vaccines for the rotavirus and norovirus, two intractable gastro-intestinal viruses. They hope to roll those trials out in the next year or two.
Meanwhile, other research on antibodies is in their pipeline—all of it using tobacco, Shiraishi said. "We've taken something bad for public health and made it our mini factories."
If you were one of the millions who masked up, washed your hands thoroughly and socially distanced, pat yourself on the back—you may have helped change the course of human history.
Scientists say that thanks to these safety precautions, which were introduced in early 2020 as a way to stop transmission of the novel COVID-19 virus, a strain of influenza has been completely eliminated. This marks the first time in human history that a virus has been wiped out through non-pharmaceutical interventions, such as vaccines.
The flu shot, explained
Influenza viruses type A and B are responsible for the majority of human illnesses and the flu season.
Centers for Disease Control
For more than a decade, flu shots have protected against two types of the influenza virus–type A and type B. While there are four different strains of influenza in existence (A, B, C, and D), only strains A, B, and C are capable of infecting humans, and only A and B cause pandemics. In other words, if you catch the flu during flu season, you’re most likely sick with flu type A or B.
Flu vaccines contain inactivated—or dead—influenza virus. These inactivated viruses can’t cause sickness in humans, but when administered as part of a vaccine, they teach a person’s immune system to recognize and kill those viruses when they’re encountered in the wild.
Each spring, a panel of experts gives a recommendation to the US Food and Drug Administration on which strains of each flu type to include in that year’s flu vaccine, depending on what surveillance data says is circulating and what they believe is likely to cause the most illness during the upcoming flu season. For the past decade, Americans have had access to vaccines that provide protection against two strains of influenza A and two lineages of influenza B, known as the Victoria lineage and the Yamagata lineage. But this year, the seasonal flu shot won’t include the Yamagata strain, because the Yamagata strain is no longer circulating among humans.
How Yamagata Disappeared
Flu surveillance data from the Global Initiative on Sharing All Influenza Data (GISAID) shows that the Yamagata lineage of flu type B has not been sequenced since April 2020.
Nature
Experts believe that the Yamagata lineage had already been in decline before the pandemic hit, likely because the strain was naturally less capable of infecting large numbers of people compared to the other strains. When the COVID-19 pandemic hit, the resulting safety precautions such as social distancing, isolating, hand-washing, and masking were enough to drive the virus into extinction completely.
Because the strain hasn’t been circulating since 2020, the FDA elected to remove the Yamagata strain from the seasonal flu vaccine. This will mark the first time since 2012 that the annual flu shot will be trivalent (three-component) rather than quadrivalent (four-component).
Should I still get the flu shot?
The flu shot will protect against fewer strains this year—but that doesn’t mean we should skip it. Influenza places a substantial health burden on the United States every year, responsible for hundreds of thousands of hospitalizations and tens of thousands of deaths. The flu shot has been shown to prevent millions of illnesses each year (more than six million during the 2022-2023 season). And while it’s still possible to catch the flu after getting the flu shot, studies show that people are far less likely to be hospitalized or die when they’re vaccinated.
Another unexpected benefit of dropping the Yamagata strain from the seasonal vaccine? This will possibly make production of the flu vaccine faster, and enable manufacturers to make more vaccines, helping countries who have a flu vaccine shortage and potentially saving millions more lives.
After his grandmother’s dementia diagnosis, one man invented a snack to keep her healthy and hydrated.
On a visit to his grandmother’s nursing home in 2016, college student Lewis Hornby made a shocking discovery: Dehydration is a common (and dangerous) problem among seniors—especially those that are diagnosed with dementia.
Hornby’s grandmother, Pat, had always had difficulty keeping up her water intake as she got older, a common issue with seniors. As we age, our body composition changes, and we naturally hold less water than younger adults or children, so it’s easier to become dehydrated quickly if those fluids aren’t replenished. What’s more, our thirst signals diminish naturally as we age as well—meaning our body is not as good as it once was in letting us know that we need to rehydrate. This often creates a perfect storm that commonly leads to dehydration. In Pat’s case, her dehydration was so severe she nearly died.
When Lewis Hornby visited his grandmother at her nursing home afterward, he learned that dehydration especially affects people with dementia, as they often don’t feel thirst cues at all, or may not recognize how to use cups correctly. But while dementia patients often don’t remember to drink water, it seemed to Hornby that they had less problem remembering to eat, particularly candy.
Where people with dementia often forget to drink water, they're more likely to pick up a colorful snack, Hornby found. alzheimers.org.uk
Hornby wanted to create a solution for elderly people who struggled keeping their fluid intake up. He spent the next eighteen months researching and designing a solution and securing funding for his project. In 2019, Hornby won a sizable grant from the Alzheimer’s Society, a UK-based care and research charity for people with dementia and their caregivers. Together, through the charity’s Accelerator Program, they created a bite-sized, sugar-free, edible jelly drop that looked and tasted like candy. The candy, called Jelly Drops, contained 95% water and electrolytes—important minerals that are often lost during dehydration. The final product launched in 2020—and was an immediate success. The drops were able to provide extra hydration to the elderly, as well as help keep dementia patients safe, since dehydration commonly leads to confusion, hospitalization, and sometimes even death.
Not only did Jelly Drops quickly become a favorite snack among dementia patients in the UK, but they were able to provide an additional boost of hydration to hospital workers during the pandemic. In NHS coronavirus hospital wards, patients infected with the virus were regularly given Jelly Drops to keep their fluid levels normal—and staff members snacked on them as well, since long shifts and personal protective equipment (PPE) they were required to wear often left them feeling parched.
In April 2022, Jelly Drops launched in the United States. The company continues to donate 1% of its profits to help fund Alzheimer’s research.