Parkinson’s Disease Destroyed My Life. Then I Tried Deep Brain Stimulation.
[Editor's Note: On June 6, 2017, Anne Shabason, an artist, hospice educator, and mother of two from Bolton, Ontario, a small town about 30 miles outside of Toronto, underwent Deep Brain Stimulation (DBS) to treat her Parkinson's disease. The FDA approved DBS for Parkinson's disease in 2002. Although it's shown to be safe and effective, agreeing to invasive brain surgery is no easy decision, even when you have your family and one of North America's premier neurosurgeons at your side.
Here, with support from Stan, her husband of the past 40 years, Anne talks about her life before Parkinson's, what the disease took away, and what she got back because of DBS. As told to writer Heather R. Johnson.]
I was an artist.
I worked in mixed media, Papier-mâché, and collage, inspired by dreams, birds, mystery. I had gallery shows and participated in studio tours.
Educated in thanatology, I worked in hospice care as a volunteer and education director for Hospice Caledon, an organization that supports people facing life-limiting illness and grief.
I trained volunteers who helped people through their transition.
Parkinson's disease changed all that.
My hands and my head were not coordinating, so it was impossible to do my art.
It started as a twitch in my leg. During a hospice workshop, my right leg started vibrating in a way I hadn't experienced before. I told a friend, "This can't be good."
Over the next year, my right foot vibrated more and more. I could not sleep well. In my dreams people lurked in corners, in dark places, and behind castle doors. I knew they were there and couldn't avoid the ambush. I shrieked and woke everyone in the house.
An anxiety attack—something I had also never experienced before—came next.
During a class I was teaching, my mouth got so dry, I couldn't speak. I stood in front of the class for three or four minutes, unable to continue. I pushed through and finished the class. That's when I realized this was more than jiggling legs.
That's when I went to see a doctor.
A Diagnosis
My first doctor, when I suggested it might be Parkinson's, didn't believe me. She sent me to a neurologist who told me I had to meditate more and calm myself.
A friend from hospice told me to phone the Toronto Western Hospital Movement Disorders Clinic. In January 2010, I was diagnosed with Parkinson's disease.
The doctor, a fellow, got all my stats and asked a lot of questions. He was so excited he knew what it was, he exclaimed, "You've got Parkinson's!" like it was the best thing ever. I must say, that wasn't the best news, but at least I finally had a diagnosis.
I could choose whether to take medication or not. The doctor said, "If Parkinson's is compromising your lifestyle, you should consider taking levodopa."
"Well I can't run my classes, I can't do my art, so it's compromising me," I said. And my health was going downhill. The shaking—my whole body moved—sleeping was horrible. Two to four hours max a night was usual. I had terrible anxiety and panic attacks and had to quit work.
So I started taking levodopa. It's taken in a four-hour cycle, but the medication didn't last the full time. I developed dyskenisia, a side effect of the medication that made me experience uncontrolled, involuntary movements. I was edgy, irritable, and focused on my watch like a drug addict. I'd lie on the couch, feel crummy and tired, and wait.
The medication cycle restricted where I could go. Fearing the "off" period, I avoided interaction with lifelong friends, which increased my feeling of social isolation. They would come over and cook with me and read to me sometimes, and that was fine, as long as it was during an "on" period.
There was incontinence, constipation, and fatigue.
I lost fine motor skills, like writing. And painting. My hands and my head were not coordinating, so it was impossible to do my art.
It was a terrible time.
The worst symptoms—what pushed me to consider DBS—were the symptoms no one could see. The anxiety and depression were so bad, the sleeplessness, not eating.
I projected a lot of my discomforts onto Stan. I reacted so badly to him. I actually separated from him briefly on two separate occasions and lived in a separate space—a self-imposed isolation. There wasn't anything he could do to help me really except sit back and watch.
I tried alternative therapies—a naturopath, an osteopath, a reflexologist and a Chinese medicine practitioner—but nothing seemed to help.
I felt like I was dying. Certain parts of my life were being taken away from me. I was a perfectionist, and I felt imperfect. It was a horrible feeling, to not be in control of myself.
The DBS Decision
I was familiar with DBS, a procedure that involves a neurosurgeon drilling small holes into your skull and implanting electrical leads deep in your brain to modify neural activity, reducing involuntary movements.
But I was convinced I'd never do it. I was brought up in a family that believed 'doctors make you sick and hospitals kill you.'
I worried the room wouldn't be sterile. Someone's cutting into your brain, you don't know what's going to happen. They're putting things in your body. I didn't want to risk possible infection.
And my doctor said he couldn't promise he would actually do the operation. It might be a fellow, but he'd be in the background in case anything went wrong. I wasn't comfortable with that arrangement.
When filmmakers Taryn Southern and Elena Gaby decided to make a documentary about people whose lives were changed by cutting-edge brain implants--and I agreed to participate—my doctor said he would for sure do the operation. They couldn't risk anything happening on the operating table on camera, so most of my fears went away.
My family supported the decision. My mother had trigeminal neuralgia, which is a very painful facial condition. She also had a stroke and what we now believe to be Parkinson's. My father, a retired dentist, managed her care and didn't give her the opportunity to see a specialist.
I felt them running the knife across my scalp, and drilling two holes in my head, but only as pressure, not pain.
When we were talking about DBS, my son, Joseph, said, "How can you not do this, for the sake of your family? Because if you don't, you'll end up like Grandma, who, for the last few years of her life, just lay on a couch because she didn't get any kind of outside help. If you even have a chance to improve your life or give yourself five extra years, why wouldn't you do that, for our sake? Are we not worth that?"
That talk really affected me, and I realized I had to try. Even though it was difficult, I had to be brave for my family.
Surgery, Recovery, and Tweaking
You have to be awake for part of the procedure—I was awake enough that my subconscious could hear, because they had to know how far to insert the electrodes. DBS targets the troublemaking areas of the brain. There's a one millimeter difference between success and failure.
I felt them running the knife across my scalp, and drilling two holes in my head, but only as pressure, not pain.
Once they were inside, they asked me to move parts of my body to see whether the right neurons were activated.
They put me to sleep to put a battery-powered neurostimulator in my chest. A wire that runs behind my ear and down my neck connects the electrodes in my brain to the battery pack. The neurostimulator creates electric pulses 24 hours a day.
I was moving around almost immediately after surgery. Recovery from the stitches took a few weeks, but everything else took a lot longer.
I couldn't read. My motor skills were still impaired, and my brain and my hands weren't yet linked up. I needed the device to be programmed and tweaked. Until that happened, I needed help.
The depression and anxiety, though, went away almost immediately. From that perspective, it was like I never had Parkinson's. I was so happy.
When they calibrated the electrodes, they adjusted how much electrical current goes to any one of four contact points on the left and right sides of the brain. If they increased it too much, a leg would start shaking, a foot would start cramping, or my tongue would feel thicker. It took a while to get it calibrated correctly to control the symptoms.
First it was five sessions in five weeks, then once a month, then every three months. Now I visit every six months. As the disease progresses, they have the ability to keep making adjustments. (DBS controls the symptoms, but it doesn't cure the disease.)
Once they got the calibration right, my motor skills improved. I could walk without shuffling. My muscles weren't stiff and aching, and the dyskinesia disappeared. But if I turn off the device, my symptoms return almost immediately.
Some days I have more fatigue than others, and sometimes my brain doesn't click. And my voice got softer – that's a common side effect of this operation. But I'm doing so much better than before.
I have a quality of life I didn't have before. Before COVID-19 hit, Stan and I traveled, went to concerts, movies, galleries, and spent time with our growing family.
Anne in her home studio with her art, 2019.
I cut back the levodopa from seven-and-a-half pills a day to two-and-a-half. I often forget to take my medication until I realize I'm feeling tired or anxious.
Best of all, my motivation and creative ability have clicked in.
I am an artist—again.
I'm painting every day. It's what is keeping me sane. It's my saving grace.
I'm not perfect. But I am Anne. Again.
Catching colds may help protect kids from Covid
A common cold virus causes the immune system to produce T cells that also provide protection against SARS-CoV-2, according to new research. The study, published last month in PNAS, shows that this effect is most pronounced in young children. The finding may help explain why most young people who have been exposed to the cold-causing coronavirus have not developed serious cases of COVID-19.
One curiosity stood out in the early days of the COVID-19 pandemic – why were so few kids getting sick. Generally young children and the elderly are the most vulnerable to disease outbreaks, particularly viral infections, either because their immune systems are not fully developed or they are starting to fail.
But solid information on the new infection was so scarce that many public health officials acted on the precautionary principle, assumed a worst-case scenario, and applied the broadest, most restrictive policies to all people to try to contain the coronavirus SARS-CoV-2.
One early thought was that lockdowns worked and kids (ages 6 months to 17 years) simply were not being exposed to the virus. So it was a shock when data started to come in showing that well over half of them carried antibodies to the virus, indicating exposure without getting sick. That trend grew over time and the latest tracking data from the CDC shows that 96.3 percent of kids in the U.S. now carry those antibodies.
Antibodies are relatively quick and easy to measure, but some scientists are exploring whether the reactions of T cells could serve as a more useful measure of immune protection.
But that couldn't be the whole story because antibody protection fades, sometimes as early as a month after exposure and usually within a year. Additionally, SARS-CoV-2 has been spewing out waves of different variants that were more resistant to antibodies generated by their predecessors. The resistance was so significant that over time the FDA withdrew its emergency use authorization for a handful of monoclonal antibodies with earlier approval to treat the infection because they no longer worked.
Antibodies got most of the attention early on because they are part of the first line response of the immune system. Antibodies can bind to viruses and neutralize them, preventing infection. They are relatively quick and easy to measure and even manufacture, but as SARS-CoV-2 showed us, often viruses can quickly evolve to become more resistant to them. Some scientists are exploring whether the reactions of T cells could serve as a more useful measure of immune protection.
Kids, colds and T cells
T cells are part of the immune system that deals with cells once they have become infected. But working with T cells is much more difficult, takes longer, and is more expensive than working with antibodies. So studies often lags behind on this part of the immune system.
A group of researchers led by Annika Karlsson at the Karolinska Institute in Sweden focuses on T cells targeting virus-infected cells and, unsurprisingly, saw that they can play a role in SARS-CoV-2 infection. Other labs have shown that vaccination and natural exposure to the virus generates different patterns of T cell responses.
The Swedes also looked at another member of the coronavirus family, OC43, which circulates widely and is one of several causes of the common cold. The molecular structure of OC43 is similar to its more deadly cousin SARS-CoV-2. Sometimes a T cell response to one virus can produce a cross-reactive response to a similar protein structure in another virus, meaning that T cells will identify and respond to the two viruses in much the same way. Karlsson looked to see if T cells for OC43 from a wide age range of patients were cross-reactive to SARS-CoV-2.
And that is what they found, as reported in the PNAS study last month; there was cross-reactive activity, but it depended on a person’s age. A subset of a certain type of T cells, called mCD4+,, that recognized various protein parts of the cold-causing virus, OC43, expressed on the surface of an infected cell – also recognized those same protein parts from SARS-CoV-2. The T cell response was lower than that generated by natural exposure to SARS-CoV-2, but it was functional and thus could help limit the severity of COVID-19.
“One of the most politicized aspects of our pandemic response was not accepting that children are so much less at risk for severe disease with COVID-19,” because usually young children are among the most vulnerable to pathogens, says Monica Gandhi, professor of medicine at the University of California San Francisco.
“The cross-reactivity peaked at age six when more than half the people tested have a cross-reactive immune response,” says Karlsson, though their sample is too small to say if this finding applies more broadly across the population. The vast majority of children as young as two years had OC43-specific mCD4+ T cell responses. In adulthood, the functionality of both the OC43-specific and the cross-reactive T cells wane significantly, especially with advanced age.
“Considering that the mortality rate in children is the lowest from ages five to nine, and higher in younger children, our results imply that cross-reactive mCD4+ T cells may have a role in the control of SARS-CoV-2 infection in children,” the authors wrote in their paper.
“One of the most politicized aspects of our pandemic response was not accepting that children are so much less at risk for severe disease with COVID-19,” because usually young children are among the most vulnerable to pathogens, says Monica Gandhi, professor of medicine at the University of California San Francisco and author of the book, Endemic: A Post-Pandemic Playbook, to be released by the Mayo Clinic Press this summer. The immune response of kids to SARS-CoV-2 stood our expectations on their head. “We just haven't seen this before, so knowing the mechanism of protection is really important.”
Why the T cell immune response can fade with age is largely unknown. With some viruses such as measles, a single vaccination or infection generates life-long protection. But respiratory tract infections, like SARS-CoV-2, cause a localized infection - specific to certain organs - and that response tends to be shorter lived than systemic infections that affect the entire body. Karlsson suspects the elderly might be exposed to these localized types of viruses less often. Also, frequent continued exposure to a virus that results in reactivation of the memory T cell pool might eventually result in “a kind of immunosenescence or immune exhaustion that is associated with aging,” Karlsson says. https://leaps.org/scientists-just-started-testing-a-new-class-of-drugs-to-slow-and-even-reverse-aging/particle-3 This fading protection is why older people need to be repeatedly vaccinated against SARS-CoV-2.
Policy implications
Following the numbers on COVID-19 infections and severity over the last three years have shown us that healthy young people without risk factors are not likely to develop serious disease. This latest study points to a mechanism that helps explain why. But the inertia of existing policies remains. How should we adjust policy recommendations based on what we know today?
The World Health Organization (WHO) updated their COVID-19 vaccination guidance on March 28. It calls for a focus on vaccinating and boosting those at risk for developing serious disease. The guidance basically shrugged its shoulders when it came to healthy children and young adults receiving vaccinations and boosters against COVID-19. It said the priority should be to administer the “traditional essential vaccines for children,” such as those that protect against measles, rubella, and mumps.
“As an immunologist and a mother, I think that catching a cold or two when you are a kid and otherwise healthy is not that bad for you. Children have a much lower risk of becoming severely ill with SARS-CoV-2,” says Karlsson. She has followed public health guidance in Sweden, which means that her young children have not been vaccinated, but being older, she has received the vaccine and boosters. Gandhi and her children have been vaccinated, but they do not plan on additional boosters.
The WHO got it right in “concentrating on what matters,” which is getting traditional childhood immunizations back on track after their dramatic decline over the last three years, says Gandhi. Nor is there a need for masking in schools, according to a study from the Catalonia region of Spain. It found “no difference in masking and spread in schools,” particularly since tracking data indicate that nearly all young people have been exposed to SARS-CoV-2.
Both researchers lament that public discussion has overemphasized the quickly fading antibody part of the immune response to SARS-CoV-2 compared with the more durable T cell component. They say developing an efficient measure of T cell response for doctors to use in the clinic would help to monitor immunity in people at risk for severe cases of COVID-19 compared with the current method of toting up potential risk factors.
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on new scientific theories and progress to give you a therapeutic dose of inspiration headed into the weekend.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the stories covered this week:
- The eyes are the windows to the soul - and biological aging?
- What bean genes mean for health and the planet
- This breathing practice could lower levels of tau proteins
- AI beats humans at assessing heart health
- Should you get a nature prescription?