So-Called “Puppy Mills” Are Not All As Bad As We Think, Pioneering Research Suggests
Candace Croney joined the faculty at Purdue University in 2011, thinking her job would focus on the welfare of livestock and poultry in Indiana. With bachelor's, master's, and doctoral degrees in animal sciences, her work until then had centered on sheep, cattle, and pigs. She'd even had the esteemed animal behaviorist Temple Grandin help shape her master's research project.
Croney's research has become the first of its kind in the world—and it's challenging our understanding of how dog breeding is being done.
Then came an email from a new colleague asking Croney to discuss animal welfare with some of Indiana's commercial dog breeders, the kind who produce large quantities of puppies for sale in pet stores.
"I didn't even know the term commercial breeders," Croney says. "I'd heard the term 'puppy millers.' That's pretty much what I knew."
She went to the first few kennels and braced herself for an upsetting experience. She's a dog lover who has fostered shelter mutts and owned one, and she'd seen the stories: large-scale breeders being called cruel and evil, lawmakers trying to ban the sale of commercially bred puppies, and constant encouragement to rescue a dog instead of paying into a greedy, heartless "puppy mill" industry.
But when she got to the kennels, she was surprised. While she encountered a number of things she didn't like about the infrastructure at the older facilities—a lack of ventilation, a lot of noise, bad smells—most of the dogs themselves were clean. The majority didn't have physical problems. No open sores. No battered bodies. Nothing like what she'd seen online.
But still, the way the dogs acted gave her pause.
"Things were, in many regards, better than I thought they would be," Croney says. "Google told me the dogs would be physically a mess, and they weren't, but behaviorally, things were jumping out at me."
While she did note that some of the breeders had play yards for their pups, a number of the dogs feared new people and things like leashes because they hadn't been exposed to enough of them. Some of the dogs also seemed to lack adequate toys, activities, and games to keep them mentally and physically stimulated.
But she was there strictly as a representative of the university to ask questions and offer feedback, no more or less. A few times, she says, she felt like the breeders wanted her to endorse what they were doing, "and I immediately got my back up about that. I did not want my name used to validate things that I could tell I didn't agree with. It was uncomfortable from that perspective."
After sharing the animal-welfare information her colleague had requested, Croney figured that was that. She never expected to be in a commercial kennel again. But six months later, her phone rang. Some of the people she'd met were involved in legislative lobbying, and they were trying to write welfare standards for Indiana's commercial breeders to follow.
In the continuing battle over what is, and is not, a "puppy mill," they wanted somebody with a strong research background to set a baseline standard, somebody who would actually bring objectivity to the breeder-activist conflict without being on one side or the other.
In other words, they wanted Croney's help to figure out not only appropriate enclosure sizes, but also requirements for socialization and enrichment activities—stimulation she knew the dogs desperately needed.
"I thought, crap, how am I not going to help?" she recalls. "And they said, 'Well how long will that take? A couple of weeks? A month?'"
Dr. Croney with Theo, whom she calls "a beloved family member of our research team."
(Photo credit: Purdue University/Vincent Walter)
Six years later, Croney's research remains ongoing. It has become the first of its kind in the world—and it's challenging our understanding of how dog breeding is being done, and how it could and should be done for years to come.
How We Got Here
Americans have been breeding pet dogs in large-scale kennels since World War II. The federal standard that regulates those kennels is the Animal Welfare Act, which President Johnson signed into law in 1966. Back then, people thought it was OK to treat dogs a lot differently than they do today. The law has been updated, but it still allows a dog the size of a Beagle to be kept in a cage the size of a dishwasher all day, every day because for some dogs, when the law was written, having a cage that size meant an improvement in living conditions.
Countless commercial breeders, who are regularly inspected under the Animal Welfare Act, have long believed that as long as they followed the law, they were doing things right. And they've seen sales for their puppies go up and up over the years. About 38 percent of U.S. households now own one or more dogs, the highest rate since the American Veterinary Medical Association began measuring the statistic in 1982.
Consumers now demand eight million dogs per year, which has reinforced breeders' beliefs that despite what activists shout at protests, the breeders are actually running businesses the public supports. As one Ohio commercial breeder—long decried by activists as a "puppy mill" owner—told The Washington Post in 2016, "This is a customer-driven industry. If we weren't satisfying the customer, we'd starve to death. I've never seen prices like the ones we're seeing now, in my whole career."
That breeder, though, is also among leading industry voices who say they understand that public perception of what's acceptable and what's not in a breeding kennel has changed. Regardless of what the laws are, they say, kennels must change along with the public's wishes if the commercial breeding industry is going to survive. The question is how, exactly, to move from the past to the future, at a time when demands for change have reached a fever pitch.
"The Animal Welfare Act, that was gospel. It meant you were taking care of dogs," says Bob Vetere, former head of the American Pet Products Association and now chairman of the Pet Leadership Council. "That was, what, 40 years ago? Things have evolved. People understand much more since then—and back then, there were maybe 20 million dogs in the country. Now, there's 90 million. It's that dramatic. People love their dogs, and everybody is going to get one."
Vetere became an early supporter of Croney's research, which, unbelievably, became the first ever to focus on what it actually means to run a good commercial breeding kennel. At the start of her research, Croney found that the scientific literature underpinning many existing laws and opinions was not just lacking, but outright nonexistent.
"We kept finding it over and over," she says of the literature gaps, citing common but uninformed beliefs about appropriate kennel size as just one example. "I can't find any research about how much space they're supposed to have. People said, 'Yeah, we had a meeting and a bunch of people made some recommendations.'"
She started filling in the research gaps with her team at Purdue, building relationships with dog breeders until she had more than 100 kennels letting her methodically figure out what was actually working for the dogs.
"The measurable successes in animal welfare over the past 50 years began from a foundation in science."
Creating Standards from Scratch
Other industry players soon took notice. One was Ed Sayres, who had served as CEO of the ASPCA for nearly a decade before turning his attention to lobbying efforts regarding the "puppy mill" issue. He recognized that what Croney was doing for commercial breeding mirrored the early work researchers started a half-century ago in the effort that led to better shelters all across America today.
"The measurable successes in animal welfare over the past 50 years began from a foundation in science," Sayres says. "Whether it was the transition to more humane euthanasia methods or how to manage dog and cat overpopulation, we found success from rigorous examination of facts and emerging science."
Sayres, Vetere, and others began pushing for the industry to support Croney's work, moving the goalposts beyond Indiana to the entire United States.
"If you don't have commercial breeding, you have people importing dogs from overseas with no restrictions, or farming in their backyards to make money," Vetere says. "You need commercial breeders with standards—and that's what Candace is trying to create, those standards."
Croney ended up with a $900,000 grant from three industry organizations: the World Pet Association, Pet Food Institute, and the Pet Industry Joint Advisory Council. With their support, she created a nationwide program called Canine Care Certified, like a Good Housekeeping Seal of Approval for a kennel. The program focuses on outcome-based standards, meaning she looks at what the dogs tell her about how well they are doing through their health and behavior. For the most part, beyond baseline requirements, the program lets a breeder achieve those goals in whatever ways work for the dogs.
The approach is different from many legislative efforts, with laws stating a cage must be made three feet larger to be considered humane. Instead, Croney walks through kennels with breeders and points out, for instance, which puppies in a litter seem to be shy or fearful, and then teaches the breeders how to give those puppies better socialization. She helps the breeders find ways to introduce dogs to strangers and objects like umbrellas that may not be part of regular kennel life, but will need to become familiar when the breeding dog retires and gets adopted into a home as a pet. She helps breeders understand that dogs need mental as well as physical stimulation, whether it comes from playing with balls and toys or running up and down slides.
The breeders can't learn fast enough, Croney says, and she remains stunned at how they constantly ask for more information—an attitude that made her stop using the term "puppy mill" to describe them at all.
"Now, full disclosure: Given that all of these kennels had volunteered, the odds were that we were seeing a skewed population, and that it skewed positive," she says. "But if you read what was in the media at the time, we shouldn't have been able to find any. We're told that all these kennels are terrible. Clearly, it was possible to get a positive outcome."
To Buy or Not to Buy?
Today, she says, she's shocked at how quickly some of the kennels have improved. Facilities that appalled her at first sight now have dogs greeting people with wagging tails.
"Not only would I get a dog from them, but would I put my dog there in that kennel temporarily? Yeah, I would."
"The most horrifying thing I learned was that some of these people weren't doing what I'd like to see, not because they didn't care or only wanted money, but because nobody had ever told them," she says. "As it turned out, they didn't know any different, and no one would help them."
For Americans who want to know whether it's OK to get a commercially bred puppy, Croney says she thinks about her own dogs. When she started working with the breeders, there were plenty of kennels that, she says, she would not have wanted to patronize. But now she's changing her mind about more and more of them.
"I'm just speaking as somebody who loves dogs and wants to make sure I'm not subsidizing anything inhumane or cruel," she says. "Not only would I get a dog from them, but would I put my dog there in that kennel temporarily? Yeah, I would."
She says the most important thing is for consumers to find out how a pup was raised, and how the pup's parents were raised. As with most industries, commercial breeders run the gamut, from barely legal to above and beyond.
Not everyone agrees with Croney's take on the situation, or with her approach to improving commercial breeding kennels. In its publication "Puppy Mills and the Animal Welfare Act," the Humane Society of the United States writes that while Croney's Canine Care Certified program supports "common areas of agreement" with animal-welfare lobbyists, her work has been funded by the pet industry—suggesting that it's impure—and a voluntary program is not enough to incentivize breeders to improve.
New laws, the Humane Society states, must be enacted to impose change: "Many commercial dog breeding operators will not raise their standards voluntarily, and even if they were to agree to do so it is not clear whether there would be any independent mechanism for enforcement or transparency for the public's sake. ... The logical conclusion is that improved standards must be codified."
Croney says that type of attitude has long created resentment between breeders and animal-welfare activists, as opposed to actual kennel improvements. Both sides have a point; for years, there have been examples of bottom-of-the-barrel kennels that changed their ways or shut down only after regulators smacked them with violations, or after lawmakers raised operating standards in ways that required improvements for the kennels to remain legally in business.
At the same time, though, powerful organizations including the Humane Society—which had revenue of more than $165 million in 2018 alone—have routinely pushed for bans on stores that sell commercially bred puppies, and have decried "puppy mills" in marketing and fund-raising literature, without offering financial grants or educational programs to kennels that are willing to improve.
Croney believes that the reflexive demonization of all commercial breeders is a mistake. Change is more effective, she says, when breeders "want to do better, want to learn, want to grow, and you treat them as advocates and allies in doing something good for animal welfare, as opposed to treating them like they're your enemies."
"If you're watching undercover videos about people treating animals in bad ways, I'm telling you, change is happening."
She adds that anyone who says all commercial breeders are "puppy mills" needs to take a look at the kennels she's seen and the changes her work has brought—and is continuing to bring.
"The ones we work with are working really, really hard to improve and open their doors so that if somebody wants to get a dog from them, they can be assured that those dogs were treated with a level of care and compassion that wasn't there five or 10 years ago, but that is there now and will be better in a year and will be much better in five years," she says. "If you're watching undercover videos about people treating animals in bad ways, I'm telling you, change is happening. It is so much better than people realize, and it continues to get even better yet."
After spaceflight record, NASA looks to protect astronauts on even longer trips
At T-minus six seconds, the main engines of the Atlantis Space Shuttle ignited, rattling its capsule “like a skyscraper in an earthquake,” according to astronaut Tom Jones, describing the 1988 launch. As the rocket lifted off and accelerated to three times the force of Earth's gravity, “It felt as if two of my friends were standing on my chest and wouldn’t get off.” But when Atlantis reached orbit, the main engines cut off, and the astronauts were suddenly weightless.
Since 1961, NASA has sent hundreds of astronauts into space while working to making their voyages safer and smoother. Yet, challenges remain. Weightlessness may look amusing when watched from Earth, but it has myriad effects on cognition, movement and other functions. When missions to space stretch to six months or longer, microgravity can impact astronauts’ health and performance, making it more difficult to operate their spacecraft.
Yesterday, NASA astronaut Frank Rubio returned to Earth after over one year, the longest single spaceflight for a U.S. astronaut. But this is just the start; longer and more complex missions into deep space loom ahead, from returning to the moon in 2025 to eventually sending humans to Mars. To ensure that these missions succeed, NASA is increasing efforts to study the biological effects and prevent harm.
The dangers of microgravity are real
A NASA report published in 2016 details a long list of incidents and near-misses caused – at least partly – by space-induced changes in astronauts’ vision and coordination. These issues make it harder to move with precision and to judge distance and velocity.
According to the report, in 1997, a resupply ship collided with the Mir space station, possibly because a crew member bumped into the commander during the final docking maneuver. This mishap caused significant damage to the space station.
Returns to Earth suffered from problems, too. The same report notes that touchdown speeds during the first 100 space shuttle landings were “outside acceptable limits. The fastest landing on record – 224 knots (258 miles) per hour – was linked to the commander’s momentary spatial disorientation.” Earlier, each of the six Apollo crews that landed on the moon had difficulty recognizing moon landmarks and estimating distances. For example, Apollo 15 landed in an unplanned area, ultimately straddling the rim of a five-foot deep crater on the moon, harming one of its engines.
Spaceflight causes unique stresses on astronauts’ brains and central nervous systems. NASA is working to reduce these harmful effects.
NASA
Space messes up your brain
In space, astronauts face the challenges of microgravity, ionizing radiation, social isolation, high workloads, altered circadian rhythms, monotony, confined living quarters and a high-risk environment. Among these issues, microgravity is one of the most consequential in terms of physiological changes. It changes the brain’s structure and its functioning, which can hurt astronauts’ performance.
The brain shifts upwards within the skull, displacing the cerebrospinal fluid, which reduces the brain’s cushioning. Essentially, the brain becomes crowded inside the skull like a pair of too-tight shoes.
That’s partly because of how being in space alters blood flow. On Earth, gravity pulls our blood and other internal fluids toward our feet, but our circulatory valves ensure that the fluids are evenly distributed throughout the body. In space, there’s not enough gravity to pull the fluids down, and they shift up, says Rachael D. Seidler, a physiologist specializing in spaceflight at the University of Florida and principal investigator on many space-related studies. The head swells and legs appear thinner, causing what astronauts call “puffy face chicken legs.”
“The brain changes at the structural and functional level,” says Steven Jillings, equilibrium and aerospace researcher at the University of Antwerp in Belgium. “The brain shifts upwards within the skull,” displacing the cerebrospinal fluid, which reduces the brain’s cushioning. Essentially, the brain becomes crowded inside the skull like a pair of too-tight shoes. Some of the displaced cerebrospinal fluid goes into cavities within the brain, called ventricles, enlarging them. “The remaining fluids pool near the chest and heart,” explains Jillings. After 12 consecutive months in space, one astronaut had a ventricle that was 25 percent larger than before the mission.
Some changes reverse themselves while others persist for a while. An example of a longer-lasting problem is spaceflight-induced neuro-ocular syndrome, which results in near-sightedness and pressure inside the skull. A study of approximately 300 astronauts shows near-sightedness affects about 60 percent of astronauts after long missions on the International Space Station (ISS) and more than 25 percent after spaceflights of only a few weeks.
Another long-term change could be the decreased ability of cerebrospinal fluid to clear waste products from the brain, Seidler says. That’s because compressing the brain also compresses its waste-removing glymphatic pathways, resulting in inflammation, vulnerability to injuries and worsening its overall health.
The effects of long space missions were best demonstrated on astronaut twins Scott and Mark Kelly. This NASA Twins Study showed multiple, perhaps permanent, changes in Scott after his 340-day mission aboard the ISS, compared to Mark, who remained on Earth. The differences included declines in Scott’s speed, accuracy and cognitive abilities that persisted longer than six months after returning to Earth in March 2016.
By the end of 2020, Scott’s cognitive abilities improved, but structural and physiological changes to his eyes still remained, he said in a BBC interview.
“It seems clear that the upward shift of the brain and compression of the surrounding tissues with ventricular expansion might not be a good thing,” Seidler says. “But, at this point, the long-term consequences to brain health and human performance are not really known.”
NASA astronaut Kate Rubins conducts a session for the Neuromapping investigation.
NASA
Staying sharp in space
To investigate how prolonged space travel affects the brain, NASA launched a new initiative called the Complement of Integrated Protocols for Human Exploration Research (CIPHER). “CIPHER investigates how long-duration spaceflight affects both brain structure and function,” says neurobehavioral scientist Mathias Basner at the University of Pennsylvania, a principal investigator for several NASA studies. “Through it, we can find out how the brain adapts to the spaceflight environment and how certain brain regions (behave) differently after – relative to before – the mission.”
To do this, he says, “Astronauts will perform NASA’s cognition test battery before, during and after six- to 12-month missions, and will also perform the same test battery in an MRI scanner before and after the mission. We have to make sure we better understand the functional consequences of spaceflight on the human brain before we can send humans safely to the moon and, especially, to Mars.”
As we go deeper into space, astronauts cognitive and physical functions will be even more important. “A trip to Mars will take about one year…and will introduce long communication delays,” Seidler says. “If you are on that mission and have a problem, it may take eight to 10 minutes for your message to reach mission control, and another eight to 10 minutes for the response to get back to you.” In an emergency situation, that may be too late for the response to matter.
“On a mission to Mars, astronauts will be exposed to stressors for unprecedented amounts of time,” Basner says. To counter them, NASA is considering the continuous use of artificial gravity during the journey, and Seidler is studying whether artificial gravity can reduce the harmful effects of microgravity. Some scientists are looking at precision brain stimulation as a way to improve memory and reduce anxiety due to prolonged exposure to radiation in space.
Other scientists are exploring how to protect neural stem cells (which create brain cells) from radiation damage, developing drugs to repair damaged brain cells and protect cells from radiation.
To boldly go where no astronauts have gone before, they must have optimal reflexes, vision and decision-making. In the era of deep space exploration, the brain—without a doubt—is the final frontier.
Additionally, NASA is scrutinizing each aspect of the mission, including astronaut exercise, nutrition and intellectual engagement. “We need to give astronauts meaningful work. We need to stimulate their sensory, cognitive and other systems appropriately,” Basner says, especially given their extreme confinement and isolation. The scientific experiments performed on the ISS – like studying how microgravity affects the ability of tissue to regenerate is a good example.
“We need to keep them engaged socially, too,” he continues. The ISS crew, for example, regularly broadcasts from space and answers prerecorded questions from students on Earth, and can engage with social media in real time. And, despite tight quarters, NASA is ensuring the crew capsule and living quarters on the moon or Mars include private space, which is critical for good mental health.
Exploring deep space builds on a foundation that began when astronauts first left the planet. With each mission, scientists learn more about spaceflight effects on astronauts’ bodies. NASA will be using these lessons to succeed with its plans to build science stations on the moon and, eventually, Mars.
“Through internally and externally led research, investigations implemented in space and in spaceflight simulations on Earth, we are striving to reduce the likelihood and potential impacts of neurostructural changes in future, extended spaceflight,” summarizes NASA scientist Alexandra Whitmire. To boldly go where no astronauts have gone before, they must have optimal reflexes, vision and decision-making. In the era of deep space exploration, the brain—without a doubt—is the final frontier.
A newly discovered brain cell may lead to better treatments for cognitive disorders
Swiss researchers have discovered a third type of brain cell that appears to be a hybrid of the two other primary types — and it could lead to new treatments for many brain disorders.
The challenge: Most of the cells in the brain are either neurons or glial cells. While neurons use electrical and chemical signals to send messages to one another across small gaps called synapses, glial cells exist to support and protect neurons.
Astrocytes are a type of glial cell found near synapses. This close proximity to the place where brain signals are sent and received has led researchers to suspect that astrocytes might play an active role in the transmission of information inside the brain — a.k.a. “neurotransmission” — but no one has been able to prove the theory.
A new brain cell: Researchers at the Wyss Center for Bio and Neuroengineering and the University of Lausanne believe they’ve definitively proven that some astrocytes do actively participate in neurotransmission, making them a sort of hybrid of neurons and glial cells.
According to the researchers, this third type of brain cell, which they call a “glutamatergic astrocyte,” could offer a way to treat Alzheimer’s, Parkinson’s, and other disorders of the nervous system.
“Its discovery opens up immense research prospects,” said study co-director Andrea Volterra.
The study: Neurotransmission starts with a neuron releasing a chemical called a neurotransmitter, so the first thing the researchers did in their study was look at whether astrocytes can release the main neurotransmitter used by neurons: glutamate.
By analyzing astrocytes taken from the brains of mice, they discovered that certain astrocytes in the brain’s hippocampus did include the “molecular machinery” needed to excrete glutamate. They found evidence of the same machinery when they looked at datasets of human glial cells.
Finally, to demonstrate that these hybrid cells are actually playing a role in brain signaling, the researchers suppressed their ability to secrete glutamate in the brains of mice. This caused the rodents to experience memory problems.
“Our next studies will explore the potential protective role of this type of cell against memory impairment in Alzheimer’s disease, as well as its role in other regions and pathologies than those explored here,” said Andrea Volterra, University of Lausanne.
But why? The researchers aren’t sure why the brain needs glutamatergic astrocytes when it already has neurons, but Volterra suspects the hybrid brain cells may help with the distribution of signals — a single astrocyte can be in contact with thousands of synapses.
“Often, we have neuronal information that needs to spread to larger ensembles, and neurons are not very good for the coordination of this,” researcher Ludovic Telley told New Scientist.
Looking ahead: More research is needed to see how the new brain cell functions in people, but the discovery that it plays a role in memory in mice suggests it might be a worthwhile target for Alzheimer’s disease treatments.
The researchers also found evidence during their study that the cell might play a role in brain circuits linked to seizures and voluntary movements, meaning it’s also a new lead in the hunt for better epilepsy and Parkinson’s treatments.
“Our next studies will explore the potential protective role of this type of cell against memory impairment in Alzheimer’s disease, as well as its role in other regions and pathologies than those explored here,” said Volterra.