So-Called “Puppy Mills” Are Not All As Bad As We Think, Pioneering Research Suggests
Candace Croney joined the faculty at Purdue University in 2011, thinking her job would focus on the welfare of livestock and poultry in Indiana. With bachelor's, master's, and doctoral degrees in animal sciences, her work until then had centered on sheep, cattle, and pigs. She'd even had the esteemed animal behaviorist Temple Grandin help shape her master's research project.
Croney's research has become the first of its kind in the world—and it's challenging our understanding of how dog breeding is being done.
Then came an email from a new colleague asking Croney to discuss animal welfare with some of Indiana's commercial dog breeders, the kind who produce large quantities of puppies for sale in pet stores.
"I didn't even know the term commercial breeders," Croney says. "I'd heard the term 'puppy millers.' That's pretty much what I knew."
She went to the first few kennels and braced herself for an upsetting experience. She's a dog lover who has fostered shelter mutts and owned one, and she'd seen the stories: large-scale breeders being called cruel and evil, lawmakers trying to ban the sale of commercially bred puppies, and constant encouragement to rescue a dog instead of paying into a greedy, heartless "puppy mill" industry.
But when she got to the kennels, she was surprised. While she encountered a number of things she didn't like about the infrastructure at the older facilities—a lack of ventilation, a lot of noise, bad smells—most of the dogs themselves were clean. The majority didn't have physical problems. No open sores. No battered bodies. Nothing like what she'd seen online.
But still, the way the dogs acted gave her pause.
"Things were, in many regards, better than I thought they would be," Croney says. "Google told me the dogs would be physically a mess, and they weren't, but behaviorally, things were jumping out at me."
While she did note that some of the breeders had play yards for their pups, a number of the dogs feared new people and things like leashes because they hadn't been exposed to enough of them. Some of the dogs also seemed to lack adequate toys, activities, and games to keep them mentally and physically stimulated.
But she was there strictly as a representative of the university to ask questions and offer feedback, no more or less. A few times, she says, she felt like the breeders wanted her to endorse what they were doing, "and I immediately got my back up about that. I did not want my name used to validate things that I could tell I didn't agree with. It was uncomfortable from that perspective."
After sharing the animal-welfare information her colleague had requested, Croney figured that was that. She never expected to be in a commercial kennel again. But six months later, her phone rang. Some of the people she'd met were involved in legislative lobbying, and they were trying to write welfare standards for Indiana's commercial breeders to follow.
In the continuing battle over what is, and is not, a "puppy mill," they wanted somebody with a strong research background to set a baseline standard, somebody who would actually bring objectivity to the breeder-activist conflict without being on one side or the other.
In other words, they wanted Croney's help to figure out not only appropriate enclosure sizes, but also requirements for socialization and enrichment activities—stimulation she knew the dogs desperately needed.
"I thought, crap, how am I not going to help?" she recalls. "And they said, 'Well how long will that take? A couple of weeks? A month?'"
Dr. Croney with Theo, whom she calls "a beloved family member of our research team."
(Photo credit: Purdue University/Vincent Walter)
Six years later, Croney's research remains ongoing. It has become the first of its kind in the world—and it's challenging our understanding of how dog breeding is being done, and how it could and should be done for years to come.
How We Got Here
Americans have been breeding pet dogs in large-scale kennels since World War II. The federal standard that regulates those kennels is the Animal Welfare Act, which President Johnson signed into law in 1966. Back then, people thought it was OK to treat dogs a lot differently than they do today. The law has been updated, but it still allows a dog the size of a Beagle to be kept in a cage the size of a dishwasher all day, every day because for some dogs, when the law was written, having a cage that size meant an improvement in living conditions.
Countless commercial breeders, who are regularly inspected under the Animal Welfare Act, have long believed that as long as they followed the law, they were doing things right. And they've seen sales for their puppies go up and up over the years. About 38 percent of U.S. households now own one or more dogs, the highest rate since the American Veterinary Medical Association began measuring the statistic in 1982.
Consumers now demand eight million dogs per year, which has reinforced breeders' beliefs that despite what activists shout at protests, the breeders are actually running businesses the public supports. As one Ohio commercial breeder—long decried by activists as a "puppy mill" owner—told The Washington Post in 2016, "This is a customer-driven industry. If we weren't satisfying the customer, we'd starve to death. I've never seen prices like the ones we're seeing now, in my whole career."
That breeder, though, is also among leading industry voices who say they understand that public perception of what's acceptable and what's not in a breeding kennel has changed. Regardless of what the laws are, they say, kennels must change along with the public's wishes if the commercial breeding industry is going to survive. The question is how, exactly, to move from the past to the future, at a time when demands for change have reached a fever pitch.
"The Animal Welfare Act, that was gospel. It meant you were taking care of dogs," says Bob Vetere, former head of the American Pet Products Association and now chairman of the Pet Leadership Council. "That was, what, 40 years ago? Things have evolved. People understand much more since then—and back then, there were maybe 20 million dogs in the country. Now, there's 90 million. It's that dramatic. People love their dogs, and everybody is going to get one."
Vetere became an early supporter of Croney's research, which, unbelievably, became the first ever to focus on what it actually means to run a good commercial breeding kennel. At the start of her research, Croney found that the scientific literature underpinning many existing laws and opinions was not just lacking, but outright nonexistent.
"We kept finding it over and over," she says of the literature gaps, citing common but uninformed beliefs about appropriate kennel size as just one example. "I can't find any research about how much space they're supposed to have. People said, 'Yeah, we had a meeting and a bunch of people made some recommendations.'"
She started filling in the research gaps with her team at Purdue, building relationships with dog breeders until she had more than 100 kennels letting her methodically figure out what was actually working for the dogs.
"The measurable successes in animal welfare over the past 50 years began from a foundation in science."
Creating Standards from Scratch
Other industry players soon took notice. One was Ed Sayres, who had served as CEO of the ASPCA for nearly a decade before turning his attention to lobbying efforts regarding the "puppy mill" issue. He recognized that what Croney was doing for commercial breeding mirrored the early work researchers started a half-century ago in the effort that led to better shelters all across America today.
"The measurable successes in animal welfare over the past 50 years began from a foundation in science," Sayres says. "Whether it was the transition to more humane euthanasia methods or how to manage dog and cat overpopulation, we found success from rigorous examination of facts and emerging science."
Sayres, Vetere, and others began pushing for the industry to support Croney's work, moving the goalposts beyond Indiana to the entire United States.
"If you don't have commercial breeding, you have people importing dogs from overseas with no restrictions, or farming in their backyards to make money," Vetere says. "You need commercial breeders with standards—and that's what Candace is trying to create, those standards."
Croney ended up with a $900,000 grant from three industry organizations: the World Pet Association, Pet Food Institute, and the Pet Industry Joint Advisory Council. With their support, she created a nationwide program called Canine Care Certified, like a Good Housekeeping Seal of Approval for a kennel. The program focuses on outcome-based standards, meaning she looks at what the dogs tell her about how well they are doing through their health and behavior. For the most part, beyond baseline requirements, the program lets a breeder achieve those goals in whatever ways work for the dogs.
The approach is different from many legislative efforts, with laws stating a cage must be made three feet larger to be considered humane. Instead, Croney walks through kennels with breeders and points out, for instance, which puppies in a litter seem to be shy or fearful, and then teaches the breeders how to give those puppies better socialization. She helps the breeders find ways to introduce dogs to strangers and objects like umbrellas that may not be part of regular kennel life, but will need to become familiar when the breeding dog retires and gets adopted into a home as a pet. She helps breeders understand that dogs need mental as well as physical stimulation, whether it comes from playing with balls and toys or running up and down slides.
The breeders can't learn fast enough, Croney says, and she remains stunned at how they constantly ask for more information—an attitude that made her stop using the term "puppy mill" to describe them at all.
"Now, full disclosure: Given that all of these kennels had volunteered, the odds were that we were seeing a skewed population, and that it skewed positive," she says. "But if you read what was in the media at the time, we shouldn't have been able to find any. We're told that all these kennels are terrible. Clearly, it was possible to get a positive outcome."
To Buy or Not to Buy?
Today, she says, she's shocked at how quickly some of the kennels have improved. Facilities that appalled her at first sight now have dogs greeting people with wagging tails.
"Not only would I get a dog from them, but would I put my dog there in that kennel temporarily? Yeah, I would."
"The most horrifying thing I learned was that some of these people weren't doing what I'd like to see, not because they didn't care or only wanted money, but because nobody had ever told them," she says. "As it turned out, they didn't know any different, and no one would help them."
For Americans who want to know whether it's OK to get a commercially bred puppy, Croney says she thinks about her own dogs. When she started working with the breeders, there were plenty of kennels that, she says, she would not have wanted to patronize. But now she's changing her mind about more and more of them.
"I'm just speaking as somebody who loves dogs and wants to make sure I'm not subsidizing anything inhumane or cruel," she says. "Not only would I get a dog from them, but would I put my dog there in that kennel temporarily? Yeah, I would."
She says the most important thing is for consumers to find out how a pup was raised, and how the pup's parents were raised. As with most industries, commercial breeders run the gamut, from barely legal to above and beyond.
Not everyone agrees with Croney's take on the situation, or with her approach to improving commercial breeding kennels. In its publication "Puppy Mills and the Animal Welfare Act," the Humane Society of the United States writes that while Croney's Canine Care Certified program supports "common areas of agreement" with animal-welfare lobbyists, her work has been funded by the pet industry—suggesting that it's impure—and a voluntary program is not enough to incentivize breeders to improve.
New laws, the Humane Society states, must be enacted to impose change: "Many commercial dog breeding operators will not raise their standards voluntarily, and even if they were to agree to do so it is not clear whether there would be any independent mechanism for enforcement or transparency for the public's sake. ... The logical conclusion is that improved standards must be codified."
Croney says that type of attitude has long created resentment between breeders and animal-welfare activists, as opposed to actual kennel improvements. Both sides have a point; for years, there have been examples of bottom-of-the-barrel kennels that changed their ways or shut down only after regulators smacked them with violations, or after lawmakers raised operating standards in ways that required improvements for the kennels to remain legally in business.
At the same time, though, powerful organizations including the Humane Society—which had revenue of more than $165 million in 2018 alone—have routinely pushed for bans on stores that sell commercially bred puppies, and have decried "puppy mills" in marketing and fund-raising literature, without offering financial grants or educational programs to kennels that are willing to improve.
Croney believes that the reflexive demonization of all commercial breeders is a mistake. Change is more effective, she says, when breeders "want to do better, want to learn, want to grow, and you treat them as advocates and allies in doing something good for animal welfare, as opposed to treating them like they're your enemies."
"If you're watching undercover videos about people treating animals in bad ways, I'm telling you, change is happening."
She adds that anyone who says all commercial breeders are "puppy mills" needs to take a look at the kennels she's seen and the changes her work has brought—and is continuing to bring.
"The ones we work with are working really, really hard to improve and open their doors so that if somebody wants to get a dog from them, they can be assured that those dogs were treated with a level of care and compassion that wasn't there five or 10 years ago, but that is there now and will be better in a year and will be much better in five years," she says. "If you're watching undercover videos about people treating animals in bad ways, I'm telling you, change is happening. It is so much better than people realize, and it continues to get even better yet."
Scientists are making machines, wearable and implantable, to act as kidneys
Like all those whose kidneys have failed, Scott Burton’s life revolves around dialysis. For nearly two decades, Burton has been hooked up (or, since 2020, has hooked himself up at home) to a dialysis machine that performs the job his kidneys normally would. The process is arduous, time-consuming, and expensive. Except for a brief window before his body rejected a kidney transplant, Burton has depended on machines to take the place of his kidneys since he was 12-years-old. His whole life, the 39-year-old says, revolves around dialysis.
“Whenever I try to plan anything, I also have to plan my dialysis,” says Burton says, who works as a freelance videographer and editor. “It’s a full-time job in itself.”
Many of those on dialysis are in line for a kidney transplant that would allow them to trade thrice-weekly dialysis and strict dietary limits for a lifetime of immunosuppressants. Burton’s previous transplant means that his body will likely reject another donated kidney unless it matches perfectly—something he’s not counting on. It’s why he’s enthusiastic about the development of artificial kidneys, small wearable or implantable devices that would do the job of a healthy kidney while giving users like Burton more flexibility for traveling, working, and more.
Still, the devices aren’t ready for testing in humans—yet. But recent advancements in engineering mean that the first preclinical trials for an artificial kidney could happen soon, according to Jonathan Himmelfarb, a nephrologist at the University of Washington.
“It would liberate people with kidney failure,” Himmelfarb says.
An engineering marvel
Compared to the heart or the brain, the kidney doesn’t get as much respect from the medical profession, but its job is far more complex. “It does hundreds of different things,” says UCLA’s Ira Kurtz.
Kurtz would know. He’s worked as a nephrologist for 37 years, devoting his career to helping those with kidney disease. While his colleagues in cardiology and endocrinology have seen major advances in the development of artificial hearts and insulin pumps, little has changed for patients on hemodialysis. The machines remain bulky and require large volumes of a liquid called dialysate to remove toxins from a patient’s blood, along with gallons of purified water. A kidney transplant is the next best thing to someone’s own, functioning organ, but with over 600,000 Americans on dialysis and only about 100,000 kidney transplants each year, most of those in kidney failure are stuck on dialysis.
Part of the lack of progress in artificial kidney design is the sheer complexity of the kidney’s job. Each of the 45 different cell types in the kidney do something different.
Part of the lack of progress in artificial kidney design is the sheer complexity of the kidney’s job. To build an artificial heart, Kurtz says, you basically need to engineer a pump. An artificial pancreas needs to balance blood sugar levels with insulin secretion. While neither of these tasks is simple, they are fairly straightforward. The kidney, on the other hand, does more than get rid of waste products like urea and other toxins. Each of the 45 different cell types in the kidney do something different, helping to regulate electrolytes like sodium, potassium, and phosphorous; maintaining blood pressure and water balance; guiding the body’s hormonal and inflammatory responses; and aiding in the formation of red blood cells.
There's been little progress for patients during Ira Kurtz's 37 years as a nephrologist. Artificial kidneys would change that.
UCLA
Dialysis primarily filters waste, and does so well enough to keep someone alive, but it isn’t a true artificial kidney because it doesn’t perform the kidney’s other jobs, according to Kurtz, such as sensing levels of toxins, wastes, and electrolytes in the blood. Due to the size and water requirements of existing dialysis machines, the equipment isn’t portable. Physicians write a prescription for a certain duration of dialysis and assess how well it’s working with semi-regular blood tests. The process of dialysis itself, however, is conducted blind. Doctors can’t tell how much dialysis a patient needs based on kidney values at the time of treatment, says Meera Harhay, a nephrologist at Drexel University in Philadelphia.
But it’s the impact of dialysis on their day-to-day lives that creates the most problems for patients. Only one-quarter of those on dialysis are able to remain employed (compared to 85% of similar-aged adults), and many report a low quality of life. Having more flexibility in life would make a major different to her patients, Harhay says.
“Almost half their week is taken up by the burden of their treatment. It really eats away at their freedom and their ability to do things that add value to their life,” she says.
Art imitates life
The challenge for artificial kidney designers was how to compress the kidney’s natural functions into a portable, wearable, or implantable device that wouldn’t need constant access to gallons of purified and sterilized water. The other universal challenge they faced was ensuring that any part of the artificial kidney that would come in contact with blood was kept germ-free to prevent infection.
As part of the 2021 KidneyX Prize, a partnership between the U.S. Department of Health and Human Services and the American Society of Nephrology, inventors were challenged to create prototypes for artificial kidneys. Himmelfarb’s team at the University of Washington’s Center for Dialysis Innovation won the prize by focusing on miniaturizing existing technologies to create a portable dialysis machine. The backpack sized AKTIV device (Ambulatory Kidney to Increase Vitality) will recycle dialysate in a closed loop system that removes urea from blood and uses light-based chemical reactions to convert the urea to nitrogen and carbon dioxide, which allows the dialysate to be recirculated.
Himmelfarb says that the AKTIV can be used when at home, work, or traveling, which will give users more flexibility and freedom. “If you had a 30-pound device that you could put in the overhead bins when traveling, you could go visit your grandkids,” he says.
Kurtz’s team at UCLA partnered with the U.S. Kidney Research Corporation and Arkansas University to develop a dialysate-free desktop device (about the size of a small printer) as the first phase of a progression that will he hopes will lead to something small and implantable. Part of the reason for the artificial kidney’s size, Kurtz says, is the number of functions his team are cramming into it. Not only will it filter urea from blood, but it will also use electricity to help regulate electrolyte levels in a process called electrodeionization. Kurtz emphasizes that these additional functions are what makes his design a true artificial kidney instead of just a small dialysis machine.
One version of an artificial kidney.
UCLA
“It doesn't have just a static function. It has a bank of sensors that measure chemicals in the blood and feeds that information back to the device,” Kurtz says.
Other startups are getting in on the game. Nephria Bio, a spinout from the South Korean-based EOFlow, is working to develop a wearable dialysis device, akin to an insulin pump, that uses miniature cartridges with nanomaterial filters to clean blood (Harhay is a scientific advisor to Nephria). Ian Welsford, Nephria’s co-founder and CTO, says that the device’s design means that it can also be used to treat acute kidney injuries in resource-limited settings. These potentials have garnered interest and investment in artificial kidneys from the U.S. Department of Defense.
For his part, Burton is most interested in an implantable device, as that would give him the most freedom. Even having a regular outpatient procedure to change batteries or filters would be a minor inconvenience to him.
“Being plugged into a machine, that’s not mimicking life,” he says.
This article was first published by Leaps.org on May 5, 2022.
With this new technology, hospitals and pharmacies could make vaccines and medicines onsite
Most modern biopharmaceutical medicines are produced by workhorse cells—typically bacterial but sometimes mammalian. The cells receive the synthesizing instructions on a snippet of a genetic code, which they incorporate into their DNA. The cellular machinery—ribosomes, RNAs, polymerases, and other compounds—read and use these instructions to build the medicinal molecules, which are harvested and administered to patients.
Although a staple of modern pharma, this process is complex and expensive. One must first insert the DNA instructions into the cells, which they may or may not uptake. One then must grow the cells, keeping them alive and well, so that they produce the required therapeutics, which then must be isolated and purified. To make this at scale requires massive bioreactors and big factories from where the drugs are distributed—and may take a while to arrive where they’re needed. “The pandemic showed us that this method is slow and cumbersome,” says Govind Rao, professor of biochemical engineering who directs the Center for Advanced Sensor Technology at the University of Maryland, Baltimore County (UMBC). “We need better methods that can work faster and can work locally where an outbreak is happening.”
Rao and his team of collaborators, which spans multiple research institutions, believe they have a better approach that may change medicine-making worldwide. They suggest forgoing the concept of using living cells as medicine-producers. Instead, they propose breaking the cells and using the remaining cellular gears for assembling the therapeutic compounds. Instead of inserting the DNA into living cells, the team burst them open, and removed their DNA altogether. Yet, the residual molecular machinery of ribosomes, polymerases and other cogwheels still functioned the way it would in a cell. “Now if you drop your DNA drug-making instructions into that soup, this machinery starts making what you need,” Rao explains. “And because you're no longer worrying about living cells, it becomes much simpler and more efficient.” The collaborators detail their cell-free protein synthesis or CFPS method in their recent paper published in preprint BioAxiv.
While CFPS does not use living cells, it still needs the basic building blocks to assemble proteins from—such as amino acids, nucleotides and certain types of enzymes. These are regularly added into this “soup” to keep the molecular factory chugging. “We just mix everything in as a batch and we let it integrate,” says James Robert Swartz, professor of chemical engineering and bioengineering at Stanford University and co-author of the paper. “And we make sure that we provide enough oxygen.” Rao likens the process to making milk from milk powder.
For a variety of reasons—from the field’s general inertia to regulatory approval hurdles—the method hasn’t become mainstream. The pandemic rekindled interest in medicines that can be made quickly and easily, so it drew more attention to the technology.
The idea of a cell-free protein synthesis is older than one might think. Swartz first experimented with it around 1997, when he was a chemical engineer at Genentech. While working on engineering bacteria to make pharmaceuticals, he discovered that there was a limit to what E. coli cells, the workhorse darling of pharma, could do. For example, it couldn’t grow and properly fold some complex proteins. “We tried many genetic engineering approaches, many fermentation, development, and environmental control approaches,” Swartz recalls—to no avail.
“The organism had its own agenda,” he quips. “And because everything was happening within the organism, we just couldn't really change those conditions very easily. Some of them we couldn’t change at all—we didn’t have control.”
It was out of frustration with the defiant bacteria that a new idea took hold. Could the cells be opened instead, so that the protein-forming reactions could be influenced more easily? “Obviously, we’d lose the ability for them to reproduce,” Swartz says. But that also meant that they no longer needed to keep the cells alive and could focus on making the specific reactions happen. “We could take the catalysts, the enzymes, and the more complex catalysts and activate them, make them work together, much as they would in a living cell, but the way we wanted.”
In 1998, Swartz joined Stanford, and began perfecting the biochemistry of the cell-free method, identifying the reactions he wanted to foster and stopping those he didn’t want. He managed to make the idea work, but for a variety of reasons—from the field’s general inertia to regulatory approval hurdles—the method hasn’t become mainstream. The pandemic rekindled interest in medicines that can be made quickly and easily, so it drew more attention to the technology. For their BioArxiv paper, the team tested the method by growing a specific antiviral protein called griffithsin.
First identified by Barry O’Keefe at National Cancer Institute over a decade ago, griffithsin is an antiviral known to interfere with many viruses’ ability to enter cells—including HIV, SARS, SARS-CoV-2, MERS and others. Originally isolated from the red algae Griffithsia, it works differently from antibodies and antibody cocktails.
Most antiviral medicines tend to target the specific receptors that viruses use to gain entry to the cells they infect. For example, SARS-CoV-2 uses the infamous spike protein to latch onto the ACE2 receptor of mammalian cells. The antibodies or other antiviral molecules stick to the spike protein, shutting off its ability to cling onto the ACE2 receptors. Unfortunately, the spike proteins mutate very often, so the medicines lose their potency. On the contrary, griffithsin has the ability to cling to the different parts of viral shells called capsids—namely to the molecules of mannose, a type of sugar. That extra stuff, glued all around the capsid like dead weight, makes it impossible for the virus to squeeze into the cell.
“Every time we have a vaccine or an antibody against a specific SARS-CoV-2 strain, that strain then mutates and so you lose efficacy,” Rao explains. “But griffithsin molecules glom onto the viral capsid, so the capsid essentially becomes a sticky mess and can’t enter the cell.” Mannose molecules also don’t mutate as easily as viruses’ receptors, so griffithsin-based antivirals do not have to be constantly updated. And because mannose molecules are found on many viruses’ capsids, it makes griffithsin “a universal neutralizer,” Rao explains.
“When griffithsin was discovered, we recognized that it held a lot of promise as a potential antiviral agent,” O’Keefe says. In 2010, he published a paper about griffithsin efficacy in neutralizing viruses of the corona family—after the first SARS outbreak in the early 2000s, the scientific community was interested in such antivirals. Yet, griffithsin is still not available as an off-the-shelf product. So during the Covid pandemic, the team experimented with synthesizing griffithsin using the cell-free production method. They were able to generate potent griffithsin in less than 24 hours without having to grow living cells.
The antiviral protein isn't the only type of medicine that can be made cell-free. The proteins needed for vaccine production could also be made the same way. “Such portable, on-demand drug manufacturing platforms can produce antiviral proteins within hours, making them ideal for combating future pandemics,” Rao says. “We would be able to stop the pandemic before it spreads.”
Top: Describes the process used in the study. Bottom: Describes how the new medicines and vaccines could be made at the site of a future viral outbreak.
Image courtesy of Rao and team, sourced from An approach to rapid distributed manufacturing of broad spectrumanti-viral griffithsin using cell-free systems to mitigate pandemics.
Rao’s idea is to perfect the technology to the point that any hospital or pharmacy can load up the media containing molecular factories, mix up the required amino acids, nucleotides and enzymes, and harvest the meds within hours. That will allow making medicines onsite and on demand. “That would be a self-contained production unit, so that you could just ship the production wherever the pandemic is breaking out,” says Swartz.
These units and the meds they produce, will, of course, have to undergo rigorous testing. “The biggest hurdles will be validating these against conventional technology,” Rao says. The biotech industry is risk-averse and prefers the familiar methods. But if this approach works, it may go beyond emergency situations and revolutionize the medicine-making paradigm even outside hospitals and pharmacies. Rao hopes that someday the method might become so mainstream that people may be able to buy and operate such reactors at home. “You can imagine a diabetic patient making insulin that way, or some other drugs,” Rao says. It would work not unlike making baby formula from the mere white powder. Just add water—and some oxygen, too.
Lina Zeldovich has written about science, medicine and technology for Popular Science, Smithsonian, National Geographic, Scientific American, Reader’s Digest, the New York Times and other major national and international publications. A Columbia J-School alumna, she has won several awards for her stories, including the ASJA Crisis Coverage Award for Covid reporting, and has been a contributing editor at Nautilus Magazine. In 2021, Zeldovich released her first book, The Other Dark Matter, published by the University of Chicago Press, about the science and business of turning waste into wealth and health. You can find her on http://linazeldovich.com/ and @linazeldovich.