Can AI help create “smart borders” between countries?

Can AI help create “smart borders” between countries?

A refugee in Uganda’s Oruchinga settlement uses an iris scan to claim food assistance.

Claire Nevill/WFP


In 2016, border patrols in Greece, Latvia and Hungary received a prototype for an AI-powered lie detector to help screen asylum seekers. The detector, called iBorderCtrl, was funded by the European Commission in hopes to eventually mitigate refugee crises like the one sparked by the Syrian civil war a year prior.

iBorderCtrl, which analyzes micro expressions in the face, received but one slice of the Commission’s €34.9 billion border control and migration management budget. Still in development is the more ambitious EuMigraTool, a predictive AI system that will process internet news and social media posts to estimate not only the number of migrants heading for a particular country, but also the “risks of tensions between migrants and EU citizens.”

Both iBorderCtrl and EuMigraTool are part of a broader trend: the growing digitization of migration-related technologies. Outside of the EU, in refugee camps in Jordan, the United Nations introduced iris scanning software to distribute humanitarian aid, including food and medicine. And in the United States, Customs and Border Protection has attempted to automate its services through an app called CBP One, which both travelers and asylum seekers can use to apply for I-94 forms, the arrival-departure record cards for people who are not U.S. citizens or permanent residents.

Keep Reading Keep Reading
Tim Brinkhof
Tim Brinkhof is a Dutch, New York-based journalist. He studied European history at New York University and has written about politics and technology for Vox, Jacobin, New Lines Magazine and MIT Technology Review.
Researchers claimed they built a breakthrough superconductor.  Social media shot it down almost instantly.

In July, South Korean scientists posted a paper finding they had achieved superconductivity - a claim that was debunked within days.

Adobe Stock

Harsh Mathur was a graduate physics student at Yale University in late 1989 when faculty announced they had failed to replicate claims made by scientists at the University of Utah and the University of Wolverhampton in England.

Such work is routine. Replicating or attempting to replicate the contraptions, calculations and conclusions crafted by colleagues is foundational to the scientific method. But in this instance, Yale’s findings were reported globally.

“I had a ringside view, and it was crazy,” recalls Mathur, now a professor of physics at Case Western Reserve University in Ohio.

Keep Reading Keep Reading
Ron Shinkman
Ron Shinkman is a veteran journalist whose work has appeared in the New England Journal of Medicine publication Catalyst, California Health Report, Fierce Healthcare, and many other publications. He has been a finalist for the prestigious NIHCM Foundation print journalism award twice in the past five years. Shinkman also served as Los Angeles Bureau Chief for Modern Healthcare and as a staff reporter for the Los Angeles Business Journal. He has an M.A. in English from California State University and a B.A. in English from UCLA.
Scientists implant brain cells to counter Parkinson's disease

In a recent research trial, patients with Parkinson's disease reported that their symptoms had improved after stem cells were implanted into their brains. Martin Taylor, far right, was diagnosed at age 32.

Martin Taylor

Martin Taylor was only 32 when he was diagnosed with Parkinson's, a disease that causes tremors, stiff muscles and slow physical movement - symptoms that steadily get worse as time goes on.

“It's horrible having Parkinson's,” says Taylor, a data analyst, now 41. “It limits my ability to be the dad and husband that I want to be in many cruel and debilitating ways.”

Today, more than 10 million people worldwide live with Parkinson's. Most are diagnosed when they're considerably older than Taylor, after age 60. Although recent research has called into question certain aspects of the disease’s origins, Parkinson’s eventually kills the nerve cells in the brain that produce dopamine, a signaling chemical that carries messages around the body to control movement. Many patients have lost 60 to 80 percent of these cells by the time they are diagnosed.

Keep Reading Keep Reading
Sarah Philip
Sarah Philip is a London-based freelance journalist who writes about science, film and TV. You can follow her on Twitter @sarahph1lip.