Regulation Too Often Shackles the Hands of Innovators
[Editor's Note: Our Big Moral Question this month is, "Do government regulations help or hurt the goal of responsible and timely scientific innovation?"]
After biomedical scientists demonstrated that they could make dangerous viruses like influenza even more dangerous, the National Institutes of Health (NIH) implemented a three-year moratorium on funding such research. But a couple of months ago, in December, the moratorium was lifted, and a tight set of rules were put in its place, such as a mandate for oversight panels.
"The sort of person who thinks like a bureaucratic regulator isn't the sort of person who thinks like a scientist."
The prospect of engineering a deadly pandemic virus in a laboratory suggests that only a fool would wish away government regulation entirely.
However, as a whole, regulation has done more harm than good in the arena of scientific innovation. The reason is that the sort of person who thinks like a bureaucratic regulator isn't the sort of person who thinks like a scientist. The sad fact of the matter is that those most interested in the regulatory process tend to be motivated by politics and ideology rather than scientific inquiry and technological progress.
Consider genetically engineered crops and animals, for instance. Beyond any reasonable doubt, data consistently have shown them to be safe, yet they are routinely held in regulatory limbo. For instance, it took 20 years for the AquAdvantage salmon, which grows faster than ordinary salmon, to gain approval from the FDA. What investor in his right mind would fund an entrepreneurial scientist who wishes to create genetically engineered consumer goods when he is assured that any such product could be subjected to two decades of arbitrary and pointless bureaucratic scrutiny?
Other well-intentioned regulations have created enormous problems for society. Medicine costs too much. One reason is that there is no international competition in the U.S. marketplace because it is nearly impossible to import drugs from other countries. The FDA's overcautious attitude toward approving new medications has ushered in a grassroots "right-to-try" movement, in which terminal patients are demanding access to potentially life-saving (but also potentially dangerous) treatments that are not yet federally approved. The FDA's sluggishness in approving generics also allowed the notorious former hedge fund manager Martin Shkreli to jack up the price of a drug for HIV patients because there were no competitors on the market. Thankfully, the FDA and politicians are now aware of these self-inflicted problems and are proposing possible solutions.
"Other well-intentioned regulations have created enormous problems for society."
The regulatory process itself drags on far too long and consists of procedural farces, none more so than public hearings and the solicitation of public comments. Hearings are often dominated by activists who are more concerned with theatrics and making the front page of a newspaper rather than contributing meaningfully to the scientific debate.
It is frankly absurd to believe that scientifically untrained laypeople have anything substantive to say on matters like biomedical regulation. The generals at the Pentagon quite rightly do not seek the public's council before they draw up battlefield plans, so why should scientists be subjected to an unjustifiable level of public scrutiny? Besides, there is a good chance that a substantial proportion of feedback is fake, anyway: A Wall Street Journal investigation uncovered that thousands of posts on federal websites seeking public comment on topics like net neutrality are fraudulent.
In other cases, out-of-date regulations remain on the books, holding back progress. For more than 20 years, the Dickey-Wicker Amendment has tied the hands of the NIH, essentially preventing it from funding any research that must first create human embryos or derive new embryonic stem cell lines. This seriously impedes progress in regenerative medicine and dampens the potential revolutionary potential of CRISPR, a genome editing tool that could someday be used in adult gene therapy or to "fix" unhealthy human embryos.
"Regulators and especially politicians give the false impression that any new scientific innovation should be made perfectly safe before it is allowed on the market."
Biomedicine isn't the only science to suffer at the hands of regulators. For years, the Nuclear Regulatory Commission (NRC) – an organization ostensibly concerned about nuclear safety – instead has played politics with nuclear power, particularly over a proposed waste storage facility at Yucca Mountain. Going all the way back to the Reagan administration, Yucca has been subjected to partisan assaults, culminating in the Obama administration's mothballing the project. Under the Trump administration, the NRC is once again reconsidering its future.
Perhaps the biggest problem that results from overregulation is a change in the culture. Regulators and especially politicians give the false impression that any new scientific innovation should be made perfectly safe before it is allowed on the market. This notion is known as the precautionary principle, and it is the law in the European Union. The precautionary principle is a form of technological timidity that is partially to blame for Europe's lagging behind America in groundbreaking research.
Besides, perfect safety is an impossible goal. Nothing in life is perfectly safe. The same people who drive to Whole Foods to avoid GMOs and synthetic pesticides seem not to care that automobiles kill 30,000 Americans every single year.
Government regulation is necessary because people rightfully expect a safe place to work and live. However, charlatans and lawbreakers will always exist, no matter how many new rules are added. The proliferation of safety regulations, therefore, often results in increasing the burden on innovators without any concomitant increase in safety. Like an invasive weed, government regulation has spread far beyond its proper place in the ecosystem. It's time for a weedkiller.
[Ed. Note: Check out the opposite viewpoint here, and follow LeapsMag on social media to share your perspective.]
Fast for Longevity, with Less Hunger, with Dr. Valter Longo
You’ve probably heard about intermittent fasting, where you don’t eat for about 16 hours each day and limit the window where you’re taking in food to the remaining eight hours.
But there’s another type of fasting, called a fasting-mimicking diet, with studies pointing to important benefits. For today’s podcast episode, I chatted with Dr. Valter Longo, a biogerontologist at the University of Southern California, about all kinds of fasting, and particularly the fasting-mimicking diet, which minimizes hunger as much as possible. Going without food for a period of time is an example of good stress: challenges that work at the cellular level to boost health and longevity.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
If you’ve ever spent more than a few minutes looking into fasting, you’ve almost certainly come upon Dr. Longo's name. He is the author of the bestselling book, The Longevity Diet, and the best known researcher of fasting-mimicking diets.
With intermittent fasting, your body might begin to switch up its fuel type. It's usually running on carbs you get from food, which gets turned into glucose, but without food, your liver starts making something called ketones, which are molecules that may benefit the body in a number of ways.
With the fasting-mimicking diet, you go for several days eating only types of food that, in a way, keep themselves secret from your body. So at the level of your cells, the body still thinks that it’s fasting. This is the best of both worlds – you’re not completely starving because you do take in some food, and you’re getting the boosts to health that come with letting a fast run longer than intermittent fasting. In this episode, Dr. Longo talks about the growing number of studies showing why this could be very advantageous for health, as long as you undertake the diet no more than a few times per year.
Dr. Longo is the director of the Longevity Institute at USC’s Leonard Davis School of Gerontology, and the director of the Longevity and Cancer program at the IFOM Institute of Molecular Oncology in Milan. In addition, he's the founder and president of the Create Cures Foundation in L.A., which focuses on nutrition for the prevention and treatment of major chronic illnesses. In 2016, he received the Glenn Award for Research on Aging for the discovery of genes and dietary interventions that regulate aging and prevent diseases. Dr. Longo received his PhD in biochemistry from UCLA and completed his postdoc in the neurobiology of aging and Alzheimer’s at USC.
Show links:
Create Cures Foundation, founded by Dr. Longo: www.createcures.org
Dr. Longo's Facebook: https://www.facebook.com/profvalterlongo/
Dr. Longo's Instagram: https://www.instagram.com/prof_valterlongo/
Dr. Longo's book: The Longevity Diet
The USC Longevity Institute: https://gero.usc.edu/longevity-institute/
Dr. Longo's research on nutrition, longevity and disease: https://pubmed.ncbi.nlm.nih.gov/35487190/
Dr. Longo's research on fasting mimicking diet and cancer: https://pubmed.ncbi.nlm.nih.gov/34707136/
Full list of Dr. Longo's studies: https://pubmed.ncbi.nlm.nih.gov/?term=Longo%2C+Valter%5BAuthor%5D&sort=date
Research on MCT oil and Alzheimer's: https://alz-journals.onlinelibrary.wiley.com/doi/f...
Keto Mojo device for measuring ketones
Silkworms with spider DNA spin silk stronger than Kevlar
Story by Freethink
The study and copying of nature’s models, systems, or elements to address complex human challenges is known as “biomimetics.” Five hundred years ago, an elderly Italian polymath spent months looking at the soaring flight of birds. The result was Leonardo da Vinci’s biomimetic Codex on the Flight of Birds, one of the foundational texts in the science of aerodynamics. It’s the science that elevated the Wright Brothers and has yet to peak.
Today, biomimetics is everywhere. Shark-inspired swimming trunks, gecko-inspired adhesives, and lotus-inspired water-repellents are all taken from observing the natural world. After millions of years of evolution, nature has quite a few tricks up its sleeve. They are tricks we can learn from. And now, thanks to some spider DNA and clever genetic engineering, we have another one to add to the list.
The elusive spider silk
We’ve known for a long time that spider silk is remarkable, in ways that synthetic fibers can’t emulate. Nylon is incredibly strong (it can support a lot of force), and Kevlar is incredibly tough (it can absorb a lot of force). But neither is both strong and tough. In all artificial polymeric fibers, strength and toughness are mutually exclusive, and so we pick the material best for the job and make do.
Spider silk, a natural polymeric fiber, breaks this rule. It is somehow both strong and tough. No surprise, then, that spider silk is a source of much study.The problem, though, is that spiders are incredibly hard to cultivate — let alone farm. If you put them together, they will attack and kill each other until only one or a few survive. If you put 100 spiders in an enclosed space, they will go about an aggressive, arachnocidal Hunger Games. You need to give each its own space and boundaries, and a spider hotel is hard and costly. Silkworms, on the other hand, are peaceful and productive. They’ll hang around all day to make the silk that has been used in textiles for centuries. But silkworm silk is fragile. It has very limited use.
The elusive – and lucrative – trick, then, would be to genetically engineer a silkworm to produce spider-quality silk. So far, efforts have been fruitless. That is, until now.
We can have silkworms creating silk six times as tough as Kevlar and ten times as strong as nylon.
Spider-silkworms
Junpeng Mi and his colleagues working at Donghua University, China, used CRISPR gene-editing technology to recode the silk-creating properties of a silkworm. First, they took genes from Araneus ventricosus, an East Asian orb-weaving spider known for its strong silk. Then they placed these complex genes – genes that involve more than 100 amino acids – into silkworm egg cells. (This description fails to capture how time-consuming, technical, and laborious this was; it’s a procedure that requires hundreds of thousands of microinjections.)
This had all been done before, and this had failed before. Where Mi and his team succeeded was using a concept called “localization.” Localization involves narrowing in on a very specific location in a genome. For this experiment, the team from Donghua University developed a “minimal basic structure model” of silkworm silk, which guided the genetic modifications. They wanted to make sure they had the exactly right transgenic spider silk proteins. Mi said that combining localization with this basic structure model “represents a significant departure from previous research.” And, judging only from the results, he might be right. Their “fibers exhibited impressive tensile strength (1,299 MPa) and toughness (319 MJ/m3), surpassing Kevlar’s toughness 6-fold.”
A world of super-materials
Mi’s research represents the bursting of a barrier. It opens up hugely important avenues for future biomimetic materials. As Mi puts it, “This groundbreaking achievement effectively resolves the scientific, technical, and engineering challenges that have hindered the commercialization of spider silk, positioning it as a viable alternative to commercially synthesized fibers like nylon and contributing to the advancement of ecological civilization.”
Around 60 percent of our clothing is made from synthetic fibers like nylon, polyester, and acrylic. These plastics are useful, but often bad for the environment. They shed into our waterways and sometimes damage wildlife. The production of these fibers is a source of greenhouse gas emissions. Now, we have a “sustainable, eco-friendly high-strength and ultra-tough alternative.” We can have silkworms creating silk six times as tough as Kevlar and ten times as strong as nylon.
We shouldn’t get carried away. This isn’t going to transform the textiles industry overnight. Gene-edited silkworms are still only going to produce a comparatively small amount of silk – even if farmed in the millions. But, as Mi himself concedes, this is only the beginning. If Mi’s localization and structure-model techniques are as remarkable as they seem, then this opens up the door to a great many supermaterials.
Nature continues to inspire. We had the bird, the gecko, and the shark. Now we have the spider-silkworm. What new secrets will we unravel in the future? And in what exciting ways will it change the world?