Researchers Behaving Badly: Known Frauds Are "the Tip of the Iceberg"
Last week, the whistleblowers in the Paolo Macchiarini affair at Sweden's Karolinska Institutet went on the record here to detail the retaliation they suffered for trying to expose a star surgeon's appalling research misconduct.
Scientific fraud of the type committed by Macchiarini is rare, but studies suggest that it's on the rise.
The whistleblowers had discovered that in six published papers, Macchiarini falsified data, lied about the condition of patients and circumvented ethical approvals. As a result, multiple patients suffered and died. But Karolinska turned a blind eye for years.
Scientific fraud of the type committed by Macchiarini is rare, but studies suggest that it's on the rise. Just this week, for example, Retraction Watch and STAT together broke the news that a Harvard Medical School cardiologist and stem cell researcher, Piero Anversa, falsified data in a whopping 31 papers, which now have to be retracted. Anversa had claimed that he could regenerate heart muscle by injecting bone marrow cells into damaged hearts, a result that no one has been able to duplicate.
A 2009 study published in the Public Library of Science (PLOS) found that about two percent of scientists admitted to committing fabrication, falsification or plagiarism in their work. That's a small number, but up to one third of scientists admit to committing "questionable research practices" that fall into a gray area between rigorous accuracy and outright fraud.
These dubious practices may include misrepresentations, research bias, and inaccurate interpretations of data. One common questionable research practice entails formulating a hypothesis after the research is done in order to claim a successful premise. Another highly questionable practice that can shape research is ghost-authoring by representatives of the pharmaceutical industry and other for-profit fields. Still another is gifting co-authorship to unqualified but powerful individuals who can advance one's career. Such practices can unfairly bolster a scientist's reputation and increase the likelihood of getting the work published.
The above percentages represent what scientists admit to doing themselves; when they evaluate the practices of their colleagues, the numbers jump dramatically. In a 2012 study published in the Journal of Research in Medical Sciences, researchers estimated that 14 percent of other scientists commit serious misconduct, while up to 72 percent engage in questionable practices. While these are only estimates, the problem is clearly not one of just a few bad apples.
In the PLOS study, Daniele Fanelli says that increasing evidence suggests the known frauds are "just the 'tip of the iceberg,' and that many cases are never discovered" because fraud is extremely hard to detect.
Essentially everyone wants to be associated with big breakthroughs, and they may overlook scientifically shaky foundations when a major advance is claimed.
In addition, it's likely that most cases of scientific misconduct go unreported because of the high price of whistleblowing. Those in the Macchiarini case showed extraordinary persistence in their multi-year campaign to stop his deadly trachea implants, while suffering serious damage to their careers. Such heroic efforts to unmask fraud are probably rare.
To make matters worse, there are numerous players in the scientific world who may be complicit in either committing misconduct or covering it up. These include not only primary researchers but co-authors, institutional executives, journal editors, and industry leaders. Essentially everyone wants to be associated with big breakthroughs, and they may overlook scientifically shaky foundations when a major advance is claimed.
Another part of the problem is that it's rare for students in science and medicine to receive an education in ethics. And studies have shown that older, more experienced and possibly jaded researchers are more likely to fudge results than their younger, more idealistic colleagues.
So, given the steep price that individuals and institutions pay for scientific misconduct, what compels them to go down that road in the first place? According to the JRMS study, individuals face intense pressures to publish and to attract grant money in order to secure teaching positions at universities. Once they have acquired positions, the pressure is on to keep the grants and publishing credits coming in order to obtain tenure, be appointed to positions on boards, and recruit flocks of graduate students to assist in research. And not to be underestimated is the human ego.
Paolo Macchiarini is an especially vivid example of a scientist seeking not only fortune, but fame. He liberally (and falsely) claimed powerful politicians and celebrities, even the Pope, as patients or admirers. He may be an extreme example, but we live in an age of celebrity scientists who bring huge amounts of grant money and high prestige to the institutions that employ them.
The media plays a significant role in both glorifying stars and unmasking frauds. In the Macchiarini scandal, the media first lifted him up, as in NBC's laudatory documentary, "A Leap of Faith," which painted him as a kind of miracle-worker, and then brought him down, as in the January 2016 documentary, "The Experiments," which chronicled the agonizing death of one of his patients.
Institutions can also play a crucial role in scientific fraud by putting more emphasis on the number and frequency of papers published than on their quality. The whole course of a scientist's career is profoundly affected by something called the h-index. This is a number based on both the frequency of papers published and how many times the papers are cited by other researchers. Raising one's ranking on the h-index becomes an overriding goal, sometimes eclipsing the kind of patient, time-consuming research that leads to true breakthroughs based on reliable results.
Universities also create a high-pressured environment that encourages scientists to cut corners. They, too, place a heavy emphasis on attracting large monetary grants and accruing fame and prestige. This can lead them, just as it led Karolinska, to protect a star scientist's sloppy or questionable research. According to Dr. Andrew Rosenberg, who is director of the Center for Science and Democracy at the U.S.-based Union of Concerned Scientists, "Karolinska defended its investment in an individual as opposed to the long-term health of the institution. People were dying, and they should have outsourced the investigation from the very beginning."
Having institutions investigate their own practices is a conflict of interest from the get-go, says Rosenberg.
Scientists, universities, and research institutions are also not immune to fads. "Hot" subjects attract grant money and confer prestige, incentivizing scientists to shift their research priorities in a direction that garners more grants. This can mean neglecting the scientist's true area of expertise and interests in favor of a subject that's more likely to attract grant money. In Macchiarini's case, he was allegedly at the forefront of the currently sexy field of regenerative medicine -- a field in which Karolinska was making a huge investment.
The relative scarcity of resources intensifies the already significant pressure on scientists. They may want to publish results rapidly, since they face many competitors for limited grant money, academic positions, students, and influence. The scarcity means that a great many researchers will fail while only a few succeed. Once again, the temptation may be to rush research and to show it in the most positive light possible, even if it means fudging or exaggerating results.
Though the pressures facing scientists are very real, the problem of misconduct is not inevitable.
Intense competition can have a perverse effect on researchers, according to a 2007 study in the journal Science of Engineering and Ethics. Not only does it place undue pressure on scientists to succeed, it frequently leads to the withholding of information from colleagues, which undermines a system in which new discoveries build on the previous work of others. Researchers may feel compelled to withhold their results because of the pressure to be the first to publish. The study's authors propose that more investment in basic research from governments could alleviate some of these competitive pressures.
Scientific journals, although they play a part in publishing flawed science, can't be expected to investigate cases of suspected fraud, says the German science blogger Leonid Schneider. Schneider's writings helped to expose the Macchiarini affair.
"They just basically wait for someone to retract problematic papers," he says.
He also notes that, while American scientists can go to the Office of Research Integrity to report misconduct, whistleblowers in Europe have no external authority to whom they can appeal to investigate cases of fraud.
"They have to go to their employer, who has a vested interest in covering up cases of misconduct," he says.
Science is increasingly international. Major studies can include collaborators from several different countries, and he suggests there should be an international body accessible to all researchers that will investigate suspected fraud.
Ultimately, says Rosenberg, the scientific system must incorporate trust. "You trust co-authors when you write a paper, and peer reviewers at journals trust that scientists at research institutions like Karolinska are acting with integrity."
Without trust, the whole system falls apart. It's the trust of the public, an elusive asset once it has been betrayed, that science depends upon for its very existence. Scientific research is overwhelmingly financed by tax dollars, and the need for the goodwill of the public is more than an abstraction.
The Macchiarini affair raises a profound question of trust and responsibility: Should multiple co-authors be held responsible for a lead author's misconduct?
Karolinska apparently believes so. When the institution at last owned up to the scandal, it vindictively found Karl Henrik-Grinnemo, one of the whistleblowers, guilty of scientific misconduct as well. It also designated two other whistleblowers as "blameworthy" for their roles as co-authors of the papers on which Macchiarini was the lead author.
As a result, the whistleblowers' reputations and employment prospects have become collateral damage. Accusations of research misconduct can be a career killer. Research grants dry up, employment opportunities evaporate, publishing becomes next to impossible, and collaborators vanish into thin air.
Grinnemo contends that co-authors should only be responsible for their discrete contributions, not for the data supplied by others.
"Different aspects of a paper are highly specialized," he says, "and that's why you have multiple authors. You cannot go through every single bit of data because you don't understand all the parts of the article."
This is especially true in multidisciplinary, translational research, where there are sometimes 20 or more authors. "You have to trust co-authors, and if you find something wrong you have to notify all co-authors. But you couldn't go through everything or it would take years to publish an article," says Grinnemo.
Though the pressures facing scientists are very real, the problem of misconduct is not inevitable. Along with increased support from governments and industry, a change in academic culture that emphasizes quality over quantity of published studies could help encourage meritorious research.
But beyond that, trust will always play a role when numerous specialists unite to achieve a common goal: the accumulation of knowledge that will promote human health, wealth, and well-being.
[Correction: An earlier version of this story mistakenly credited The New York Times with breaking the news of the Anversa retractions, rather than Retraction Watch and STAT, which jointly published the exclusive on October 14th. The piece in the Times ran on October 15th. We regret the error.]
Coronavirus Misinformation: How You Can Fight Back
When it comes to fighting the new coronavirus threat, the truth is one of the few things more crucial than a gallon of hand sanitizer. But these days, both can be hard to find if you don't know where to look.
"Humans are wired to respond to emotional triggers and share misinformation if it reinforces existing beliefs and prejudices."
While it's only been around for a few months, COVID-19 has already produced an ever-expanding universe of conspiracy theories about its origins, its spread, and the danger it poses. Meanwhile, fraudulent cures and myths about treatments threaten to upend public health efforts to contain the epidemic.
But ordinary citizens aren't helpless. Research offers insight into why we're susceptible to misinformation, and armies of fact-checkers can tell us what's real and what isn't. Meanwhile, experts are offering tips about how we can effectively promote facts whether we're chatting with a stranger at the post office or challenging a cousin on Facebook.
Here a four-part strategy to help you fight back against the Coronavirus Misinformation Industrial Complex:
Understand How Bogus Beliefs Work
That crank on the Internet may be your neighbor. Or maybe even you.
According to a 2014 study published in JAMA Internal Medicine, nearly half of American surveyed said they believed in at least one grand medical conspiracy theory. Twenty percent agreed, for example, that cell phones cause cancer but officials won't do anything because of corporate pressure, and 37 percent believed an elaborate conspiracy theory about the suppression of natural cancer cures. "Although it is common to disparage adherents of conspiracy theories as a delusional fringe of paranoid cranks, our data suggest that medical conspiracy theories are widely known, broadly endorsed, and highly predictive of many common health behaviors," the study authors write.
In an interview with leapsmag, study lead author Eric Oliver said we're drawn to "conspiracy theories that correspond with our intuitions."
"In the case of medicine, I think there are three big factors: Fears of Big Pharma -- a large percentage of Americans have a distorted sense of what pharmaceutical companies are capable of -- fears of government, and fears of contagion," said Oliver, a political scientist at the University of Chicago.
Why does it matter if people believe in conspiracy theories about coronavirus? As Oliver's study notes, conspiracy theorists are less likely to rely on traditional medicine, get flu shots, or go to annual check-ups. They could be especially susceptible to disease and inappropriate treatment.
Joseph Uscinski, a professor of political science at the University of Miami who studies conspiracies, elaborated on how this works. "You could have people who think coronavirus is fake and say, 'I'm not going to wash my hand or take preventive action. This is the media making something up, or this is just a plot for the pharmaceutical companies to sell a vaccine.' If you have a lot of people acting that way, that increases the ability of the virus to spread."
Get the Facts from the Experts
How can you avoid being a misinformation source? Educate yourself to make sure you're not spouting fake facts yourself with the instant ease that the Internet allows. "Humans are wired to respond to emotional triggers and share misinformation if it reinforces existing beliefs and prejudices," writes misinformation scholar Claire Wardle in a 2019 Scientific American commentary. That means you too.
For coronavirus facts, experts recommend looking to the websites of government agencies (such as the CDC, World Health Organization and National Institutes of Health) and top-tier medical organizations (Mayo Clinic, Infectious Disease Society of America).
Respected mainstream news outlets such as The New York Times and National Public Radio offer extensive original reporting on the coronavirus threat. While some news outlets still require users to pay to get full access to stories, others have dropped their paywalls and made coronavirus content free to all. These include the Seattle Times, Bloomberg News and the medical news site Stat.
Locally, look to your region's public health department, news outlets, and medical organizations such as hospitals and health plans.
The Poynter Institute, a journalism watchdog outfit, offers a helpful guide to evaluating what you read about coronavirus. And a paid service called NewsGuard offers a browser plug-in that provides a "trust rating" for popular news sites. "Our goal is to teach news literacy–and we hope all websites will earn green ratings and be generally reliable to consumers," the NewsGuard site says.
"As we combat misinformation, we also need to be mindful of the fact that we're dealing with a lot of uncertainty."
Remember, however, that scientists and physicians are learning more about the coronavirus each day. Assumptions about the virus will change as more information comes in, and there are still many questions about crucial topics like its fatality rate and the ways the virus spreads. You should expect that reliable sources – and experts – may provide conflicting information.
"As we combat misinformation, we also need to be mindful of the fact that we're dealing with a lot of uncertainty," says Boston cardiologist and author Dr. Haider Warraich of Brigham and Women's Hospital.
Double-Check Suspicious Information
No, the coronavirus wasn't created in a Winnipeg laboratory. You can't kill it by drinking bleach or frolicking in snow. And, as the French Health Ministry helpfully advised on Twitter, "Non, La cocaïne NE protège PAS contre le #COVID19" – "No, cocaine does NOT prevent Covid-19."
Facebook, YouTube and Twitter are all trying to remove fake or misleading coronavirus content, The New York Times reported, and "all said they were making efforts to point people back to reliable sources of medical information." Still, as the Times reports, bogus cures and conspiracy theories are rampant across social media and beyond.
Fortunately, there are many fact-checking resources. Turn to them for ammunition before you amplify – or challenge -- a coronavirus claim that seems suspicious.
Helpful myth-busting resources include:
** The venerable fact-checking site Snopes.com, which has checked multiple coronavirus claims. (Example: No, garlic water won't cure coronavirus.)
** The World Health Organization. (Example: No, mosquito bites can't transmit coronavirus)
** FactCheck.org. (Example: No, a disgraced Harvard scientist wasn't arrested for creating the coronavirus.)
** PolitiFact.org. (Example: No, the coronavirus is not just "the common cold.")
** The International Fact-Checking Network, accessible via the social-media hashtags #CoronaVirusFacts and #DatosCoronaVirus.
Correct Others With Caution
On social media, anger and sarcasm make up a kind of common tongue. But sick burns won't force misinformed people see the light. Instead, try a gentler approach.
"The most important thing would be to first acknowledge their anxieties rather than first trying to rationalize away their misbeliefs," said the University of Chicago's Oliver. "People embrace misinformation and conspiracy theories because they are afraid and trying to make sense of the world. Their beliefs serve a strong emotional function and will be defended as such. Trying to rationalize with them or argue with them may be counterproductive if one can't first put them at some ease."
Turn yourself into a source of coronavirus facts and a bulwark against the fake, misleading, and fraudulent.
So what can you do? "There will never be a magic bullet," the University of Miami's Uscinski said, but one approach is to highlight reliable information from sources that the person trusts, such as news outlets (think MSNBC or Fox News) or politicians.
However, don't waste your time. "If you have people who are believing in the craziest thing, they're probably not going to offer a rational conversation," he said. And, he added, there's an alternative to correcting others: Turn yourself into a source of coronavirus facts and a bulwark against the fake, misleading, and fraudulent. "We can be preventive and inoculate people against these beliefs," he said, "by flooding the information environment with proper information as much as possible."
What's the case-fatality rate?
Currently, the official rate is 3.4%. But this is likely way too high. China was hit particularly hard, and their healthcare system was overwhelmed. The best data we have is from South Korea. The Koreans tested 210,000 people and detected the virus in 7,478 patients. So far, the death toll is 53, which is a case-fatality rate of 0.7%. This is seven times worse than the seasonal flu (which has a case-fatality rate of 0.1%).
What's the best way to clean your hands? Soap and water? Hand sanitizer?
Soap and water is always best. Be sure to wash your hands thoroughly. (The CDC recommends 20 seconds.) If soap and water are not available, the CDC says to use hand sanitizer that is at least 60% alcohol. The problem with hand sanitizer, however, is that people neither use enough nor spread it over their hands properly. Also, the sanitizer should be covering your hands for 10-15 seconds, not evaporating before that.
How often should I wash my hands?
You should wash your hands after being in a public place, before you eat, and before you touch your face. It's a good idea to wash your hands after handling money and your cell phone, too.
How long can coronavirus live on surfaces?
It depends on the surface. According to the New York Times, "[C]old and flu viruses survive longer on inanimate surfaces that are nonporous, like metal, plastic and wood, and less on porous surfaces, like clothing, paper and tissue." According to the Journal of Hospital Infection, human coronaviruses "can persist on inanimate surfaces like metal, glass or plastic for up to 9 days, but can be efficiently inactivated by surface disinfection procedures with 62–71% ethanol, 0.5% hydrogen peroxide or 0.1% sodium hypochlorite within 1 minute." (Note: Sodium hypochlorite is bleach.)
Can Lysol wipes kill it?
Maybe not. It depends on the active ingredient. Many Lysol products use benzalkonium chloride, which the aforementioned Journal of Hospital Infection paper said was "less effective." The EPA has released a list of disinfectants recommended for use against coronavirus.
Should you wear a mask in public?
The CDC does not recommend that healthy people wear a mask in public. The benefit is likely small. However, if you are sick, then you should wear a mask to help catch respiratory droplets as you exhale.
Will pets give it to you?
That can't be ruled out. There is a documented case of human-to-canine transmission. However, an article in LiveScience explains that canine-to-human is unlikely.
Are there any "normal" things we are doing that make things worse?
Yes! Not washing your hands!!
What does it mean that previously cleared people are getting sick again? Is it the virus within or have they caught it via contamination?
It's not entirely clear. It could be that the virus was never cleared to begin with. Or it could be that the person was simply infected again. That could happen if the antibodies generated don't last long.
Will the virus go away with the weather/summer?
Quite likely, yes. Cold and flu viruses don't do well outside in summer weather. (For influenza, the warm weather causes the viral envelope to become a liquid, and it can no longer protect the virus.) That's why cold and flu season is always during the late fall and winter. However, some experts think that it is a "false hope" that the coronavirus will disappear during the summer. We'll have to wait and see.
And will it come back in the fall/winter?
That's a likely outcome. Again, we'll have to wait and see. Some epidemiologists think that COVID-19 will become seasonal like influenza.
Does dry or humid air make a difference?
Flu viruses prefer cold, dry weather. That could be true of coronaviruses, too.
What is the incubation period?
According to the World Health Organization, it's about 5 days. But it could be anywhere from 1 to 14 days.
Should you worry about sitting next to asymptomatic people on a plane or train?
It's not possible to tell if an asymptomatic person is infected or not. That's what makes asymptomatic people tricky. Just be cautious. If you're worried, treat everyone like they might be infected. Don't let them get too close or cough in your face. Be sure to wash your hands.
Should you cancel air travel planned in the next 1-2 months in the U.S.?
There are no hard and fast rules. Use common sense. Avoid hotspots of infection. If you have a trip planned to Wuhan, you might want to wait on that one. If you have a trip planned to Seattle and you're over the age of 60 and/or have an underlying health condition, you may want to hold off on that, too. If you do fly on a plane, former FDA commissioner Dr. Scott Gottlieb recommends cleaning the back of your seat and other close contact areas with antiseptic wipes. He also refuses to take anything handed out by flight attendants, since he says the biggest route of transmission comes from touching contaminated surfaces (and then touching your face).
There have been reports of an escalation of hate crimes towards Asian Americans. Can the microbiologist help illuminate that this disease has impacted all racial groups?
People might be racist, but COVID-19 is not. It can infect anyone. Older people (i.e., 60 years and older) and those with underlying health conditions are most at risk. Interestingly, young people (aged 9 and under) are minimally impacted.
To what extent/if any should toddlers -- who put everything in mouth -- avoid group classes like Gymboree?
If they get infected, toddlers will probably experience only a mild illness. The problem is if the toddler then infects somebody at higher risk, like grandpa or grandma.
Should I avoid events like concerts or theater performances if I live in a place where there is known coronavirus?
It's not an unreasonable thing to do.
Any special advice or concerns for pregnant women?
There isn't good data on this. Previous evidence, reported by the CDC, suggests that pregnant women may be more susceptible to respiratory viruses.
Advice for residents of long-term care facilities/nursing homes?
Remind the nurse or aide to constantly wash their hands.
Can we eat at Chinese restaurants? Does eating onions kill viruses? Can I take an Uber and be safe from infection?
Yes. No. Does the Uber driver or previous passengers have coronavirus? It's not possible to tell. So, treat an Uber like a public space and behave accordingly.
What public spaces should we avoid?
That's hard to say. Some people avoid large gatherings, others avoid leaving the house. Ultimately, it's going to depend on who you are and what sort of risk you're willing to take. (For example, are you young and healthy or old and sick?) I would be willing to do things that I would advise older people avoid, like going to a sporting event.
What are the differences between the L strain and the S strain?
That's not entirely clear, and it's not even clear that they are separate strains. There are some genetic differences between them. However, just because RNA viruses mutate doesn't necessarily mean that the virus will mutate to something more dangerous or unrecognizable by our immune system. The measles virus mutates, but it more or less remains the same, which is why a single vaccine could eradicate it – if enough people actually were willing to get a measles shot.
Should I wear disposable gloves while traveling?
No. If you touch something that's contaminated, the virus will be on your glove instead of your hand. If you then touch your face, you still might get sick.