Scientists: Don’t Leave Religious Communities Out in the Cold
[Editor's Note: This essay is in response to our current Big Question series: "How can the religious and scientific communities work together to foster a culture that is equipped to face humanity's biggest challenges?"]
I humbly submit that the question should be rephrased: How can the religious and scientific communities NOT work together to face humanity's biggest challenges? The stakes are higher than ever before, and we simply cannot afford to go it alone.
I believe in evolution -- the evolution of the relationship of science and religion.
The future of the world depends on our collaboration. I believe in evolution -- the evolution of the relationship of science and religion. Science and religion have lived in alternately varying relationships ranging from peaceful coexistence to outright warfare. Today we have evolved and have begun to embrace the biological relationship of mutualism. This is in part due to the advances in medicine and science.
Previous scientific discoveries and paradigm shifts precipitated varying theological responses. With Copernicus, we grappled with the relationship of the earth to the universe. With Darwin, we re-evaluated the relationship of man to the other creatures on earth. However, as theologically complex as these debates were, they had no practical relevance to the common man. Indeed, it was possible for people to live their entire lives happily without pondering these issues.
In the 21st century, the microscope is honing in further, with discoveries relating to the understanding of the very nature and composition of the human being, both body and mind/soul. Thus, as opposed to the past, the implications of the latest scientific advances directly affect the common man. The religious implications are not left to the ivory tower theologians. Regular people are now confronted with practical religious questions previously unimagined.
For example, in the field of infertility, if a married woman undergoes donor insemination, is she considered an adulteress? If a woman of one faith gestates the child of another faith, to whose faith does the child belong? If your heart is failing, can you avail yourself of stem cells derived from human embryos, or would you be considered an accomplice to murder? Would it be preferable to use artificially derived stem cells if they are available?
The implications of our current debates are profound, and profoundly personal. Science is the great equalizer. Every living being can potentially benefit from medical advances. We are all consumers of the scientific advances, irrespective of race or religion. As such, we all deserve a say in their development.
If the development of the science is collaborative, surely the contemplation of its ethical/religious applications should likewise be.
With gene editing, uterus transplants, head transplants, artificial reproductive seed, and animal-human genetic combinations as daily headlines, we have myriad ethical dilemmas to ponder. What limits should we set for the uses of different technologies? How should they be financed? We must even confront the very definition of what it means to be human. A human could receive multiple artificial transplants, 3D printed organs, genetic derivatives, or organs grown in animals. When does a person become another person or lose his identity? Will a being produced entirely from synthetic DNA be human?
In the Middle Ages, it was possible for one person to master all of the known science, and even sometimes religion as well, such as the great Maimonides. In the pre-modern era, discoveries were almost always attributed to one individual: Jenner, Lister, Koch, Pasteur, and so on. Today, it is impossible for any one human being to master medicine, let alone ethics, religion, etc. Advances are made not usually by one person but by collaboration, often involving hundreds, if not thousands of people across the globe. We cite journal articles, not individuals. Furthermore, the magnitude and speed of development is staggering. Add artificial intelligence and it will continue to expand exponentially.
If the development of the science is collaborative, surely the contemplation of its ethical/religious applications should likewise be. The issues are so profound that we need all genes on deck. The religious community should have a prominent seat at the table. There is great wisdom in the religious traditions that can inform contemporary discussions. In addition, the religious communities are significant consumers of, not to mention contributors to, the medical technology.
An ongoing dialogue between the scientific and religious communities should be an institutionalized endeavor, not a sporadic event, reactive to a particular discovery. The National Institutes of Health or other national organizations could provide an online newsletter designed for the clergy with a summary of the latest developments and their potential applications. An annual meeting of scientists and religious leaders could provide a forum for the scientists to appreciate the religious ramifications of their research (which may be none as well) and for the clergy to appreciate the rapidly developing fields of science and the implications for their congregants. Theological seminaries must include basic scientific literacy as part of their curricula.
We need the proper medium of mutual respect and admiration, despite healthy disagreement.
How do we create a "culture"? Microbiological cultures take time and require the proper medium for maximal growth. If one of the variables is altered, the culture can be affected. To foster a culture of continued successful collaboration between scientists and religious communities, we likewise need the proper medium of mutual respect and admiration, despite healthy disagreement.
The only way we can navigate these unchartered waters is through constant, deep and meaningful collaboration every single step of the way. By cultivating a mutualistic relationship we can inform, caution and safeguard each other to maximize the benefits of emerging technologies.
[Ed. Note: Don't miss the other perspectives in this Big Question series, from a science scholar and a Reverend/molecular geneticist.]
Stronger psychedelics that rewire the brain, with Doug Drysdale
A promising development in science in recent years has been the use technology to optimize something natural. One-upping nature's wisdom isn't easy. In many cases, we haven't - and maybe we can't - figure it out. But today's episode features a fascinating example: using tech to optimize psychedelic mushrooms.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
These mushrooms have been used for religious, spiritual and medicinal purposes for thousands of years, but only in the past several decades have scientists brought psychedelics into the lab to enhance them and maximize their therapeutic value.
Today’s podcast guest, Doug Drysdale, is doing important work to lead this effort. Drysdale is the CEO of a company called Cybin that has figured out how to make psilocybin more potent, so it can be administered in smaller doses without side effects.
The natural form of psilocybin has been studied increasingly in the realm of mental health. Taking doses of these mushrooms appears to help people with anxiety and depression by spurring the development of connections in the brain, an example of neuroplasticity. The process basically shifts the adult brain from being fairly rigid like dried clay into a malleable substance like warm wax - the state of change that's constantly underway in the developing brains of children.
Neuroplasticity in adults seems to unlock some of our default ways of of thinking, the habitual thought patterns that’ve been associated with various mental health problems. Some promising research suggests that psilocybin causes a reset of sorts. It makes way for new, healthier thought patterns.
So what is Drysdale’s secret weapon to bring even more therapeutic value to psilocybin? It’s a process called deuteration. It focuses on the hydrogen atoms in psilocybin. These atoms are very light and don’t stick very well to carbon, which is another atom in psilocybin. As a result, our bodies can easily breaks down the bonds between the hydrogen and carbon atoms. For many people, that means psilocybin gets cleared from the body too quickly, before it can have a therapeutic benefit.
In deuteration, scientists do something simple but ingenious: they replace the hydrogen atoms with a molecule called deuterium. It’s twice as heavy as hydrogen and forms tighter bonds with the carbon. Because these pairs are so rock-steady, they slow down the rate at which psilocybin is metabolized, so it has more sustained effects on our brains.
Cybin isn’t Drysdale’s first go around at this - far from it. He has over 30 years of experience in the healthcare sector. During this time he’s raised around $4 billion of both public and private capital, and has been named Ernst and Young Entrepreneur of the Year. Before Cybin, he was the founding CEO of a pharmaceutical company called Alvogen, leading it from inception to around $500 million in revenues, across 35 countries. Drysdale has also been the head of mergers and acquisitions at Actavis Group, leading 15 corporate acquisitions across three continents.
In this episode, Drysdale walks us through the promising research of his current company, Cybin, and the different therapies he’s developing for anxiety and depression based not just on psilocybin but another psychedelic compound found in plants called DMT. He explains how they seem to have such powerful effects on the brain, as well as the potential for psychedelics to eventually support other use cases, including helping us strive toward higher levels of well-being. He goes on to discuss his views on mindfulness and lifestyle factors - such as optimal nutrition - that could help bring out hte best in psychedelics.
Show links:
Doug Drysdale full bio
Doug Drysdale twitter
Cybin website
Cybin development pipeline
Cybin's promising phase 2 research on depression
Johns Hopkins psychedelics research and psilocybin research
Mets owner Steve Cohen invests in psychedelic therapies
Doug Drysdale, CEO of Cybin
How the body's immune resilience affects our health and lifespan
Story by Big Think
It is a mystery why humans manifest vast differences in lifespan, health, and susceptibility to infectious diseases. However, a team of international scientists has revealed that the capacity to resist or recover from infections and inflammation (a trait they call “immune resilience”) is one of the major contributors to these differences.
Immune resilience involves controlling inflammation and preserving or rapidly restoring immune activity at any age, explained Weijing He, a study co-author. He and his colleagues discovered that people with the highest level of immune resilience were more likely to live longer, resist infection and recurrence of skin cancer, and survive COVID and sepsis.
Measuring immune resilience
The researchers measured immune resilience in two ways. The first is based on the relative quantities of two types of immune cells, CD4+ T cells and CD8+ T cells. CD4+ T cells coordinate the immune system’s response to pathogens and are often used to measure immune health (with higher levels typically suggesting a stronger immune system). However, in 2021, the researchers found that a low level of CD8+ T cells (which are responsible for killing damaged or infected cells) is also an important indicator of immune health. In fact, patients with high levels of CD4+ T cells and low levels of CD8+ T cells during SARS-CoV-2 and HIV infection were the least likely to develop severe COVID and AIDS.
Individuals with optimal levels of immune resilience were more likely to live longer.
In the same 2021 study, the researchers identified a second measure of immune resilience that involves two gene expression signatures correlated with an infected person’s risk of death. One of the signatures was linked to a higher risk of death; it includes genes related to inflammation — an essential process for jumpstarting the immune system but one that can cause considerable damage if left unbridled. The other signature was linked to a greater chance of survival; it includes genes related to keeping inflammation in check. These genes help the immune system mount a balanced immune response during infection and taper down the response after the threat is gone. The researchers found that participants who expressed the optimal combination of genes lived longer.
Immune resilience and longevity
The researchers assessed levels of immune resilience in nearly 50,000 participants of different ages and with various types of challenges to their immune systems, including acute infections, chronic diseases, and cancers. Their evaluation demonstrated that individuals with optimal levels of immune resilience were more likely to live longer, resist HIV and influenza infections, resist recurrence of skin cancer after kidney transplant, survive COVID infection, and survive sepsis.
However, a person’s immune resilience fluctuates all the time. Study participants who had optimal immune resilience before common symptomatic viral infections like a cold or the flu experienced a shift in their gene expression to poor immune resilience within 48 hours of symptom onset. As these people recovered from their infection, many gradually returned to the more favorable gene expression levels they had before. However, nearly 30% who once had optimal immune resilience did not fully regain that survival-associated profile by the end of the cold and flu season, even though they had recovered from their illness.
Intriguingly, some people who are 90+ years old still have optimal immune resilience, suggesting that these individuals’ immune systems have an exceptional capacity to control inflammation and rapidly restore proper immune balance.
This could suggest that the recovery phase varies among people and diseases. For example, young female sex workers who had many clients and did not use condoms — and thus were repeatedly exposed to sexually transmitted pathogens — had very low immune resilience. However, most of the sex workers who began reducing their exposure to sexually transmitted pathogens by using condoms and decreasing their number of sex partners experienced an improvement in immune resilience over the next 10 years.
Immune resilience and aging
The researchers found that the proportion of people with optimal immune resilience tended to be highest among the young and lowest among the elderly. The researchers suggest that, as people age, they are exposed to increasingly more health conditions (acute infections, chronic diseases, cancers, etc.) which challenge their immune systems to undergo a “respond-and-recover” cycle. During the response phase, CD8+ T cells and inflammatory gene expression increase, and during the recovery phase, they go back down.
However, over a lifetime of repeated challenges, the immune system is slower to recover, altering a person’s immune resilience. Intriguingly, some people who are 90+ years old still have optimal immune resilience, suggesting that these individuals’ immune systems have an exceptional capacity to control inflammation and rapidly restore proper immune balance despite the many respond-and-recover cycles that their immune systems have faced.
Public health ramifications could be significant. Immune cell and gene expression profile assessments are relatively simple to conduct, and being able to determine a person’s immune resilience can help identify whether someone is at greater risk for developing diseases, how they will respond to treatment, and whether, as well as to what extent, they will recover.