Scientists: Don’t Leave Religious Communities Out in the Cold
[Editor's Note: This essay is in response to our current Big Question series: "How can the religious and scientific communities work together to foster a culture that is equipped to face humanity's biggest challenges?"]
I humbly submit that the question should be rephrased: How can the religious and scientific communities NOT work together to face humanity's biggest challenges? The stakes are higher than ever before, and we simply cannot afford to go it alone.
I believe in evolution -- the evolution of the relationship of science and religion.
The future of the world depends on our collaboration. I believe in evolution -- the evolution of the relationship of science and religion. Science and religion have lived in alternately varying relationships ranging from peaceful coexistence to outright warfare. Today we have evolved and have begun to embrace the biological relationship of mutualism. This is in part due to the advances in medicine and science.
Previous scientific discoveries and paradigm shifts precipitated varying theological responses. With Copernicus, we grappled with the relationship of the earth to the universe. With Darwin, we re-evaluated the relationship of man to the other creatures on earth. However, as theologically complex as these debates were, they had no practical relevance to the common man. Indeed, it was possible for people to live their entire lives happily without pondering these issues.
In the 21st century, the microscope is honing in further, with discoveries relating to the understanding of the very nature and composition of the human being, both body and mind/soul. Thus, as opposed to the past, the implications of the latest scientific advances directly affect the common man. The religious implications are not left to the ivory tower theologians. Regular people are now confronted with practical religious questions previously unimagined.
For example, in the field of infertility, if a married woman undergoes donor insemination, is she considered an adulteress? If a woman of one faith gestates the child of another faith, to whose faith does the child belong? If your heart is failing, can you avail yourself of stem cells derived from human embryos, or would you be considered an accomplice to murder? Would it be preferable to use artificially derived stem cells if they are available?
The implications of our current debates are profound, and profoundly personal. Science is the great equalizer. Every living being can potentially benefit from medical advances. We are all consumers of the scientific advances, irrespective of race or religion. As such, we all deserve a say in their development.
If the development of the science is collaborative, surely the contemplation of its ethical/religious applications should likewise be.
With gene editing, uterus transplants, head transplants, artificial reproductive seed, and animal-human genetic combinations as daily headlines, we have myriad ethical dilemmas to ponder. What limits should we set for the uses of different technologies? How should they be financed? We must even confront the very definition of what it means to be human. A human could receive multiple artificial transplants, 3D printed organs, genetic derivatives, or organs grown in animals. When does a person become another person or lose his identity? Will a being produced entirely from synthetic DNA be human?
In the Middle Ages, it was possible for one person to master all of the known science, and even sometimes religion as well, such as the great Maimonides. In the pre-modern era, discoveries were almost always attributed to one individual: Jenner, Lister, Koch, Pasteur, and so on. Today, it is impossible for any one human being to master medicine, let alone ethics, religion, etc. Advances are made not usually by one person but by collaboration, often involving hundreds, if not thousands of people across the globe. We cite journal articles, not individuals. Furthermore, the magnitude and speed of development is staggering. Add artificial intelligence and it will continue to expand exponentially.
If the development of the science is collaborative, surely the contemplation of its ethical/religious applications should likewise be. The issues are so profound that we need all genes on deck. The religious community should have a prominent seat at the table. There is great wisdom in the religious traditions that can inform contemporary discussions. In addition, the religious communities are significant consumers of, not to mention contributors to, the medical technology.
An ongoing dialogue between the scientific and religious communities should be an institutionalized endeavor, not a sporadic event, reactive to a particular discovery. The National Institutes of Health or other national organizations could provide an online newsletter designed for the clergy with a summary of the latest developments and their potential applications. An annual meeting of scientists and religious leaders could provide a forum for the scientists to appreciate the religious ramifications of their research (which may be none as well) and for the clergy to appreciate the rapidly developing fields of science and the implications for their congregants. Theological seminaries must include basic scientific literacy as part of their curricula.
We need the proper medium of mutual respect and admiration, despite healthy disagreement.
How do we create a "culture"? Microbiological cultures take time and require the proper medium for maximal growth. If one of the variables is altered, the culture can be affected. To foster a culture of continued successful collaboration between scientists and religious communities, we likewise need the proper medium of mutual respect and admiration, despite healthy disagreement.
The only way we can navigate these unchartered waters is through constant, deep and meaningful collaboration every single step of the way. By cultivating a mutualistic relationship we can inform, caution and safeguard each other to maximize the benefits of emerging technologies.
[Ed. Note: Don't miss the other perspectives in this Big Question series, from a science scholar and a Reverend/molecular geneticist.]
Last November, when the U.S. Food and Drug Administration disclosed that chicken from a California firm called UPSIDE Foods did not raise safety concerns, it drily upended how humans have obtained animal protein for thousands of generations.
“The FDA is ready to work with additional firms developing cultured animal cell food and production processes to ensure their food is safe and lawful,” the agency said in a statement at the time.
Assuming UPSIDE obtains clearances from the U.S. Department of Agriculture, its chicken – grown entirely in a laboratory without harming a single bird – could be sold in supermarkets in the coming months.
“Ultimately, we want our products to be available everywhere meat is sold, including retail and food service channels,” a company spokesperson said. The upscale French restaurant Atelier Crenn in San Francisco will have UPSIDE chicken on its menu once it is approved, she added.
Known as lab-grown or cultured meat, a product such as UPSIDE’s is created using stem cells and other tissue obtained from a chicken, cow or other livestock. Those cells are then multiplied in a nutrient-dense environment, usually in conjunction with a “scaffold” of plant-based materials or gelatin to give them a familiar form, such as a chicken breast or a ribeye steak. A Dutch company called Mosa Meat claims it can produce 80,000 hamburgers derived from a cluster of tissue the size of a sesame seed.
Critics say the doubts about lab-grown meat and the possibility it could merge “Brave New World” with “The Jungle” and “Soylent Green” have not been appropriately explored.
That’s a far cry from when it took months of work to create the first lab-grown hamburger a decade ago. That minuscule patty – which did not contain any fat and was literally plucked from a Petri dish to go into a frying pan – cost about $325,000 to produce.
Just a decade later, an Israeli company called Future Meat said it can produce lab-grown meat for about $1.70 per pound. It plans to open a production facility in the U.S. sometime in 2023 and distribute its products under the brand name “Believer.”
Costs for production have sunk so low that researchers at Carnegie Mellon University in Pittsburgh expect sometime in early 2024 to produce lab-grown Wagyu steak to showcase the viability of growing high-end cuts of beef cheaply. The Carnegie Mellon team is producing its Wagyu using a consumer 3-D printer bought secondhand on eBay and modified to print the highly marbled flesh using a method developed by the university. The device costs $200 – about the same as a pound of Wagyu in the U.S. The initiative’s modest five-figure budget was successfully crowdfunded last year.
“The big cost is going to be the cells (which are being extracted by a cow somewhere in Pennsylvania), but otherwise printing doesn’t add much to the process,” said Rosalyn Abbott, a Carnegie Mellon assistant professor of bioengineering who is co-leader on the project. “But it adds value, unlike doing this with ground meat.”
Lab-Grown Meat’s Promise
Proponents of lab-grown meat say it will cut down on traditional agriculture, which has been a leading contributor to deforestation, water shortages and contaminated waterways from animal waste, as well as climate change.
An Oxford University study from 2011 concludes lab-grown meat could have greenhouse emissions 96 percent lower compared to traditionally raised livestock. Moreover, proponents of lab-grown meat claim that the suffering of animals would decline dramatically, as they would no longer need to be warehoused and slaughtered. A recently opened 26-story high-rise in China dedicated to the raising and slaughtering of pigs illustrates the current plight of livestock in stark terms.
Scientists may even learn how to tweak lab-grown meat to make it more nutritious. Natural red meat is high in saturated fat and, if it’s eaten too often, can lead to chronic diseases. In lab versions, the saturated fat could be swapped for healthier, omega-3 fatty acids.
But critics say the doubts about lab-grown meat and the possibility it could merge “Brave New World” with “The Jungle” and “Soylent Green” have not been appropriately explored.
A Slippery Slope?
Some academics who have studied the moral and ethical issues surrounding lab-grown meat believe it will have a tough path ahead gaining acceptance by consumers. Should it actually succeed in gaining acceptance, many ethical questions must be answered.
“People might be interested” in lab-grown meat, perhaps as a curiosity, said Carlos Alvaro, an associate professor of philosophy at the New York City College of Technology, part of the City University of New York. But the allure of traditionally sourced meat has been baked – or perhaps grilled – into people’s minds for so long that they may not want to make the switch. Plant-based meat provides a recent example of the uphill battle involved in changing old food habits, with Beyond Meat’s stock prices dipping nearly 80 percent in 2022.
"There are many studies showing that people don’t really care about the environment (to that extent)," Alvaro said. "So I don’t know how you would convince people to do this because of the environment.”
“From my research, I understand that the taste (of lab-grown meat) is not quite there,” Alvaro said, noting that the amino acids, sugars and other nutrients required to grow cultivated meat do not mimic what livestock are fed. He also observed that the multiplication of cells as part of the process “really mimic cancer cells” in the way they grow, another off-putting thought for would-be consumers of the product.
Alvaro is also convinced the public will not buy into any argument that lab-grown meat is more environmentally friendly.
“If people care about the environment, they either try and consume considerably less meat and other animal products, or they go vegan or vegetarian,” he said. “But there are many studies showing that people don’t really care about the environment (to that extent). So I don’t know how you would convince people to do this because of the environment.”
Ben Bramble, a professor at Australian National University who previously held posts at Princeton and Trinity College in Ireland, takes a slightly different tack. He noted that “if lab-grown meat becomes cheaper, healthier, or tastier than regular meat, there will be a large market for it. If it becomes all of these things, it will dominate the market.”
However, Bramble has misgivings about that occurring. He believes a smooth transition from traditionally sourced meat to a lab-grown version would allow humans to elide over the decades of animal cruelty perpetrated by large-scale agriculture, without fully reckoning with and learning from this injustice.
“My fear is that if we all switch over to lab-grown meat because it has become cheaper, healthier, or tastier than regular meat, we might never come to realize what we have done, and the terrible things we are capable of,” he said. “This would be a catastrophe.”
Bramble’s writings about cultured meat also raise some serious moral conundrums. If, for example, animal meat may be cultivated without killing animals, why not create products from human protein?
Actually, that’s already happened.
It occurred in 2019, when Orkan Telhan, a professor of fine arts at the University of Pennsylvania, collaborated with two scientists to create an art exhibit at the Philadelphia Museum of Art on the future of foodstuffs.
Although the exhibit included bioengineered bread and genetically modified salmon, it was an installation called “Ouroboros Steak” that drew the most attention. That was comprised of pieces of human flesh grown in a lab from cultivated cells and expired blood products obtained from online sources.
The exhibit was presented as four tiny morsels of red meat – shaped in patterns suggesting an ouroboros, a dragon eating its own tail. They were placed in tiny individual saucers atop a larger plate and placemat with a calico pattern, suggesting an item to order in a diner. The artwork drew international headlines – as well as condemnation for Telhan’s vision.
Telhan’s artwork is intended to critique the overarching assumption that lab-grown meat will eventually replace more traditional production methods, as well as the lack of transparency surrounding many processed foodstuffs. “They think that this problem (from industrial-scale agriculture) is going be solved by this new technology,” Telhan said. “I am critical (of) that perspective.”
Unlike Bramble, Telhan is not against lab-grown meat, so long as its producers are transparent about the sourcing of materials and its cultivation. But he believes that large-scale agricultural meat production – which dates back centuries – is not going to be replaced so quickly.
“We see this again and again with different industries, like algae-based fuels. A lot of companies were excited about this, and promoted it,” Telhan said. “And years later, we know these fuels work. But to be able to displace the oil industry means building the infrastructure to scale takes billions of dollars, and nobody has the patience or money to do it.”
Alvaro concurred on this point, which he believes is already weakened because a large swath of consumers aren’t concerned about environmental degradation.
“They’re going to have to sell this big, but in order to convince people to do so, they have to convince them to eat this product instead of regular meat,” Alvaro said.
Hidden Tweaks?
Moreover, if lab-based meat does obtain a significant market share, Telhan suggested companies may do things to the product – such as to genetically modify it to become more profitable – and never notify consumers. That is a particular concern in the U.S., where regulations regarding such modifications are vastly more relaxed than in the European Union.
“I think that they have really good objectives, and they aspire to good objectives,” Telhan said. “But the system itself doesn't really allow for that much transparency.”
No matter what the future holds, sometime next year Carnegie Mellon is expected to hold a press conference announcing it has produced a cut of the world’s most expensive beef with the help of a modified piece of consumer electronics. It will likely take place at around the same time UPSIDE chicken will be available for purchase in supermarkets and restaurants, pending the USDA’s approvals.
Abbott, the Carnegie Mellon professor, suggested the future event will be both informative and celebratory.
“I think Carnegie Mellon would have someone potentially cook it for us,” she said. “Like have a really good chef in New York City do it.”
The Friday Five covers five stories in research that you may have missed this week. There are plenty of controversies and troubling ethical issues in science – and we get into many of them in our online magazine – but this news roundup focuses on scientific creativity and progress to give you a therapeutic dose of inspiration headed into the weekend.
Here are the promising studies covered in this week's Friday Five, featuring interviews with Dr. David Spiegel, associate chair of psychiatry and behavioral sciences at Stanford, and Dr. Filip Swirski, professor of medicine and cardiology at the Icahn School of Medicine at Mount Sinai.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Here are the promising studies covered in this week's Friday Five, featuring interviews with Dr. David Spiegel, associate chair of psychiatry and behavioral sciences at Stanford, and Dr. Filip Swirski, professor of medicine and cardiology at the Icahn School of Medicine at Mount Sinai.
- Breathing this way cuts down on anxiety*
- Could your fasting regimen make you sick?
- This type of job makes men more virile
- 3D printed hearts could save your life
- Yet another potential benefit of metformin
* This video with Dr. Andrew Huberman of Stanford shows exactly how to do the breathing practice.