Shoot for the Moon: Its Surface Contains a Pot of Gold

Shoot for the Moon: Its Surface Contains a Pot of Gold

An astronaut standing on the Moon.

(© pe3check/Fotolia)



Here's a riddle: What do the Moon, nuclear weapons, clean energy of the future, terrorism, and lung disease all have in common?

One goal of India's upcoming space probe is to locate deposits of helium-3 that are worth trillions of dollars.

The answer is helium-3, a gas that's extremely rare on Earth but 100 million times more abundant on the Moon. This past October, the Lockheed Martin corporation announced a concept for a lunar landing craft that may return humans to the Moon in the coming decade, and yesterday China successfully landed the Change-4 probe on the far side of the Moon. Landing inside the Moon's deepest crater, the Chinese achieved a first in space exploration history.

Meanwhile, later this month, India's Chandrayaan-2 space probe will also land on the lunar surface. One of its goals is to locate deposits of helium-3 that are worth trillions of dollars, because it could be a fuel for nuclear fusion energy to generate electricity or propel a rocket.

The standard way that nuclear engineers are trying to achieve sustainable fusion uses fuels that are more plentiful on Earth: deuterium and tritium. But MIT researchers have found that adding small amounts of helium-3 to the mix could make it much more efficient, and thus a viable energy source much sooner that once thought.

Even if fusion is proven practical tomorrow, any kind of nuclear energy involves long waits for power plant construction measured in decades. However, mining helium-3 could be useful now, because of its non-energy applications. A major one is its ability to detect neutrons coming from plutonium that could be used in terrorist attacks. Here's how it works: a small amount of helium-3 is contained within a forensic instrument. When a neutron hits an atom of helium-3, the reaction produces tritium, a proton, and an electrical charge, alerting investigators to the possibility that plutonium is nearby.

Ironically, as global concern about a potential for hidden nuclear material increased in the early 2000s, so did the supply of helium-3 on Earth. That's because helium-3 comes from the decay of tritium, used in thermonuclear warheads (H-bombs). Thousands of such weapons have been dismantled from U.S. and Russian arsenals, making helium-3 available for plutonium detection, research, and other applications--including in the world of healthcare.

Helium-3 can help doctors diagnose lung diseases, since it enables imaging of the lungs in real time.

Helium-3 dramatically improves the ability of doctors to image the lungs in a range of diseases including asthma, chronic obstructive pulmonary disease and emphysema, cystic fibrosis, and bronchopulmonary dysplasia, which happens particularly in premature infants. Specifically, helium-3 is useful in magnetic resonance imaging (MRI), a procedure that creates images from within the body for diagnostic purposes.

But while a standard MRI allows doctors to visualize parts of the body like the heart or brain, it's useless for seeing the lungs. Because lungs are filled with air, which is much less dense than water or fat, effectively no signals are produced that would enable imaging.

To compensate for this problem, a patient can inhale gas that is hyperpolarized –meaning enhanced with special procedures so that the magnetic resonance signals from the lungs are finally readable. This gas is safe to breathe when mixed with enough oxygen to support life. Helium-3 is one such gas that can be hyperpolarized; since it produces such a strong signal, the MRI can literally see the air inside the lungs and in all of the airways, revealing intricate details of the bronchopulmonary tree. And it can do this in real time

The capability to show anatomic details of the lungs and airways, and the ability to display functional imaging as a patient breathes, makes helium-3 MRI far better than the standard method of testing lung function. Called spirometry, this method tells physicians how the lungs function overall, but does not home in on particular areas that may be causing a problem. Plus, spirometry requires patients to follow instructions and hold their breath, so it is not great for testing young children with pulmonary disease.

In recent years, the cost of helium-3 on Earth has skyrocketed.

Over the past several years, researchers have been developing MRI for lung testing using other hyperpolarized gases. The main alternative to helium-3 is xenon-129. Over the years, researchers have learned to overcome certain disadvantages of the latter, such as its potential to put patients to sleep. Since helium-3 provides the strongest signal, though, it is still the best gas for MRI studies in many lung conditions.

But the supply of helium-3 on Earth has been decreasing in recent years, due to the declining rate of dismantling of warheads, just as the Department of Homeland Security has required more and more of the gas for neutron detection. As a result, the cost of the gas has skyrocketed. Less is available now for medical uses – unless, of course, we begin mining it on the moon.

The question is: Are the benefits worth the 239,000-mile trip?

David Warmflash
David Warmflash is an astrobiologist and science writer. He received his M.D. from Tel Aviv University Sackler School of Medicine, and has done post doctoral work at Brandeis University, the University of Pennsylvania, and the NASA Johnson Space Center, where he was part of the NASA's first cohort of astrobiology training fellows. He has written numerous articles covering a range of science topics, from the search for extraterrestrial life and space exploration to the origins of life, genetics, neuroscience, biotechnology, and the history of science. David’s articles have appeared in various publications, including Wired UK, Discover, Scientific American, Genetic Literacy Project, and Cricket Media. Throughout 2018, he did a blog post series on the emergence of ancient science for Vision Learning, covering thinkers from history. Many of these ancient pioneers of science also make an appearance in David's new book, "Moon: An Illustrated History: From Ancient Myths to the Colonies of Tomorrow."
How thousands of first- and second-graders saved the world from a deadly disease

Although Jonas Salk has gone down in history for helping rid the world (almost) of polio, his revolutionary vaccine wouldn't have been possible without the world’s largest clinical trial – and the bravery of thousands of kids.

Exactly 67 years ago, in 1955, a group of scientists and reporters gathered at the University of Michigan and waited with bated breath for Dr. Thomas Francis Jr., director of the school’s Poliomyelitis Vaccine Evaluation Center, to approach the podium. The group had gathered to hear the news that seemingly everyone in the country had been anticipating for the past two years – whether the vaccine for poliomyelitis, developed by Francis’s former student Jonas Salk, was effective in preventing the disease.

Polio, at that point, had become a household name. As the highly contagious virus swept through the United States, cities closed their schools, movie theaters, swimming pools, and even churches to stop the spread. For most, polio presented as a mild illness, and was usually completely asymptomatic – but for an unlucky few, the virus took hold of the central nervous system and caused permanent paralysis of muscles in the legs, arms, and even people’s diaphragms, rendering the person unable to walk and breathe. It wasn’t uncommon to hear reports of people – mostly children – who fell sick with a flu-like virus and then, just days later, were relegated to spend the rest of their lives in an iron lung.

Keep Reading Keep Reading
Sarah Watts

Sarah Watts is a health and science writer based in Chicago.

Why you should (virtually) care

Virtual-first care, or V1C, could increase the quality of healthcare and make it more patient-centric by letting patients combine in-person visits with virtual options such as video for seeing their care providers.

(© Elnur/Fotolia)

As the pandemic turns endemic, healthcare providers have been eagerly urging patients to return to their offices to enjoy the benefits of in-person care.

But wait.

The last two years have forced all sorts of organizations to be nimble, adaptable and creative in how they work, and this includes healthcare providers’ efforts to maintain continuity of care under the most challenging of conditions. So before we go back to “business as usual,” don’t we owe it to those providers and ourselves to admit that business as usual did not work for most of the people the industry exists to help? If we’re going to embrace yet another period of change – periods that don’t happen often in our complex industry – shouldn’t we first stop and ask ourselves what we’re trying to achieve?

Certainly, COVID has shown that telehealth can be an invaluable tool, particularly for patients in rural and underserved communities that lack access to specialty care. It’s also become clear that many – though not all – healthcare encounters can be effectively conducted from afar. That said, the telehealth tactics that filled the gap during the pandemic were largely stitched together substitutes for existing visit-based workflows: with offices closed, patients scheduled video visits for help managing the side effects of their blood pressure medications or to see their endocrinologist for a quarterly check-in. Anyone whose children slogged through the last year or two of remote learning can tell you that simply virtualizing existing processes doesn’t necessarily improve the experience or the outcomes!

But what if our approach to post-pandemic healthcare came from a patient-driven perspective? We have a fleeting opportunity to advance a care model centered on convenient and equitable access that first prioritizes good outcomes, then selects approaches to care – and locations – tailored to each patient. Using the example of education, imagine how effective it would be if each student, regardless of their school district and aptitude, received such individualized attention.

Keep Reading Keep Reading
Jennifer C. Goldsack & Linette Demers
Jennifer C. Goldsack co-founded and serves as the CEO of the Digital Medicine Society (DiMe), a 501(c)(3) non-profit organization dedicated to advancing digital medicine to optimize human health. Jennifer’s research focuses on applied approaches to the safe, effective, and equitable use of digital technologies to improve health, healthcare, and health research. She is a member of the Roundtable on Genomics and Precision Health at the National Academies of Science, Engineering and Medicine and serves on the World Economic Forum Global Leadership Council on mental health. Previously, Jennifer spent several years at the Clinical Trials Transformation Initiative (CTTI), a public-private partnership co-founded by Duke University and the FDA. There, she led development and implementation of several projects within CTTI’s Digital Program and was the operational co-lead on the first randomized clinical trial using FDA’s Sentinel System. Jennifer spent five years working in research at the Hospital of the University of Pennsylvania, first in Outcomes Research in the Department of Surgery and later in the Department of Medicine. More recently, she helped launch the Value Institute, a pragmatic research and innovation center embedded in a large academic medical center in Delaware. Jennifer earned her master’s degree in chemistry from the University of Oxford, England, her masters in the history and sociology of medicine from the University of Pennsylvania, and her MBA from the George Washington University. Additionally, she is a certified Lean Six Sigma Green Belt and a Certified Professional in Healthcare Quality. Jennifer is a retired athlete, formerly a Pan American Games Champion, Olympian, and World Championship silver medalist. ___________________________________________________________________________ Linette Demers leads IMPACT, a DiMe initiative dedicated to advancing high value, evidence-based virtual first care for patients, healthcare providers, and payers. Previously, Linette was responsible for commercialization, entrepreneurship and capital formation programs at Life Science Washington and WINGS Angels. Her 20 year career in healthcare spans strategy, business development, and population health management in oncology care at Fred Hutch, and management consulting at Sg2. Linette holds a PhD in Chemistry and a BS in Health Economics and Outcomes Research.