Short-Term Suspended Animation for Humans Is Coming Soon
At 1 a.m., Tony B. is flown to a shock trauma center of a university hospital. Five minutes earlier, he was picked up unconscious with no blood pressure, having suffered multiple gunshot wounds with severe blood loss. Standard measures alone would not have saved his life, but on the helicopter he was injected with ice-cold fluids intravenously to begin cooling him from the inside, and given special drugs to protect his heart and brain.
Suspended animation is not routine yet, but it's going through clinical trials at the University of Maryland and the University of Pittsburgh.
A surgeon accesses Tony's aorta, allowing his body to be flushed with larger amounts of cold fluids, thereby inducing profound hypothermia -- a body temperature below 10° C (50° F). This is suspended animation, a form of human hibernation, but officially the procedure is called Emergency Preservation and Resuscitation for Cardiac Arrest from Trauma (EPR-CAT).
This chilly state, which constitutes the preservation component of Tony's care, continues for an hour as surgeons repair injuries and connect his circulation to cardiopulmonary bypass (CPB). This allows blood to move through the brain delivering oxygen at low doses appropriate for the sharply reduced metabolic rate that comes with the hypothermia, without depending on the heart and lungs. CPB also enables controlled, gradual re-warming of Tony's body as fluid and appropriate amounts of red blood cells are transfused into him.
After another hour or so, Tony's body temperature reaches the range of 32-34° C (~90-93° F), called mild hypothermia. Having begun the fluid resuscitation process already, the team stops warming Tony, switches his circulation from CPB to his own heart and lungs, and begins cardiac resuscitation with electrical jolts to his heart. With his blood pressure stable, his heart rate slow but appropriate for the mild hypothermia, Tony is maintained at this intermediate temperature for 24 hours; this last step is already standard practice in treatment of people who suffer cardiac arrest without blood loss trauma.
The purpose is to prevent brain damage that might come with the rapid influx of too much oxygen, just as a feast would mean death to a starvation victim. After he is warmed to a normal temperature of 37° C (~99° F), Tony is awakened and ultimately recovers with no brain damage.
Tony's case is fictional; EPR-CAT is not routine yet, but it's going through clinical trials at the University of Maryland and the University of Pittsburgh, under the direction of trauma surgeon Dr. Samuel Tisherman, who spent many years developing the procedure in dogs and pigs. In such cases, patients undergo suspended animation for a couple of hours at most, but other treatments are showing promise in laboratory animals, like the use of hydrogen sulfide gas without active cooling to induce suspended animation in mice. Such interventions could ultimately fuse with EPR-CAT, sending the new technology further into what's still the realm of science fiction – at least for now.
Consider the scenario of a 5-year-old girl diagnosed with a progressive, incurable, terminal disease.
Experts say that extended suspended animation – cooling patients in a stable state for months or years -- could be possible at some point, although no one can predict when the technology will be clinical reality, since hydrogen sulfide and other chemical tactics would have to move into clinical use in humans and prove safe and effective in combination with EPR-CAT, or with a similar cooling approach.
How Could Long-Term Suspended Animation Impact Humanity?
Consider the scenario of a 5-year-old girl diagnosed with a progressive, incurable, terminal disease. Since available treatments would only lengthen the projected survival by a year, she is placed into suspended animation. She is revived partially every few years, as new treatments become available that can have a major impact on her disease. After 35 years of this, she is revived completely as treatments are finally adequate to cure her condition, but biologically she has aged only a few months. Physically, she is normal now, though her parents are in their seventies, and her siblings are grown and married.
Such hypothetical scenarios raise many issues: Where will the resources come from to take care of patients for that long? Who will pay? And how will patients adapt when they emerge into a completely different world?
"Heavy resource utilization is a factor if you've got people hibernating for years or decades," says Bradford Winters, an associate professor of anesthesiology and critical care medicine, and assistant professor of neurological surgery at Johns Hopkins.
Conceivably, special high-tech facilities with robots and artificial intelligence watching over the hibernators might solve the resource issue, but even then, Winters notes that long-term hibernation would entail major disparities between the wealthy and poor. "And then there is the psychological effect of being disconnected from one's family and society for a generation or more," he says. "What happens to that 5-year-old waking to her retired parents and married siblings? Will her younger sister adopt her? What would that be like?"
Probably better than dying is one answer.
Back on Earth, human hibernation would raise daunting policy questions that may take many years to resolve.
Outside of medicine, one application of human hibernation that has intrigued generations of science fiction writers is in long-duration space travel. During a voyage lasting years or decades, space explorers or colonists not only could avoid long periods of potential boredom, but also the aging process. Considering that the alternative to "sleeper ships" would be multi-generation starships so large that they'd be like small worlds, human hibernation in spaceflight could become an enabling technology for interstellar flight.
Big Questions: It's Not Too Early to Ask
Back on Earth, the daunting policy questions may take many years to resolve. Society ought to be aware of them now, before human hibernation technology outpaces its dramatic implications.
"Our current framework of ethical and legal regulation is adequate for cases like the gunshot victim who is chilled deeply for a few hours. Short-term cryopreservation is currently part of the continuum of care," notes David N. Hoffman, a clinical ethicist and health care attorney who teaches at Columbia University, and at Yeshiva University's Benjamin N. Cardozo School of Law and Albert Einstein College of Medicine.
"But we'll need a new framework when there's a capability to cryopreserve people for many years and still bring them back. There's also a legal-ethical issue involving the parties that decide to put the person into hibernation versus the patient wishes in terms of what risk benefit ratio they would accept, and who is responsible for the expense and burdens associated with cases that don't turn out just right?"
To begin thinking about practical solutions, Hoffman characterizes long-term human hibernation as an extension of the ethics of cyro-preserved embryos that are held for potential parents, often for long periods of time. But the human hibernation issue is much more complex.
"The ability of the custodian and patient to enter into a meaningful and beneficial arrangement is fraught, because medical advances necessary to address the person's illness or injury are -- by definition -- unknown," says Hoffman. "It means that you need a third party, a surrogate, to act on opportunities that the patient could never have contemplated."
Such multigenerational considerations might become more manageable, of course, in an era when gene therapy, bionic parts, and genetically engineered replacement organs enable dramatic life extension. But if people will be living for centuries regardless of whether or not they hibernate, then developing the medical technology may be the least of the challenges.
If you were one of the millions who masked up, washed your hands thoroughly and socially distanced, pat yourself on the back—you may have helped change the course of human history.
Scientists say that thanks to these safety precautions, which were introduced in early 2020 as a way to stop transmission of the novel COVID-19 virus, a strain of influenza has been completely eliminated. This marks the first time in human history that a virus has been wiped out through non-pharmaceutical interventions, such as vaccines.
The flu shot, explained
Influenza viruses type A and B are responsible for the majority of human illnesses and the flu season.
Centers for Disease Control
For more than a decade, flu shots have protected against two types of the influenza virus–type A and type B. While there are four different strains of influenza in existence (A, B, C, and D), only strains A, B, and C are capable of infecting humans, and only A and B cause pandemics. In other words, if you catch the flu during flu season, you’re most likely sick with flu type A or B.
Flu vaccines contain inactivated—or dead—influenza virus. These inactivated viruses can’t cause sickness in humans, but when administered as part of a vaccine, they teach a person’s immune system to recognize and kill those viruses when they’re encountered in the wild.
Each spring, a panel of experts gives a recommendation to the US Food and Drug Administration on which strains of each flu type to include in that year’s flu vaccine, depending on what surveillance data says is circulating and what they believe is likely to cause the most illness during the upcoming flu season. For the past decade, Americans have had access to vaccines that provide protection against two strains of influenza A and two lineages of influenza B, known as the Victoria lineage and the Yamagata lineage. But this year, the seasonal flu shot won’t include the Yamagata strain, because the Yamagata strain is no longer circulating among humans.
How Yamagata Disappeared
Flu surveillance data from the Global Initiative on Sharing All Influenza Data (GISAID) shows that the Yamagata lineage of flu type B has not been sequenced since April 2020.
Nature
Experts believe that the Yamagata lineage had already been in decline before the pandemic hit, likely because the strain was naturally less capable of infecting large numbers of people compared to the other strains. When the COVID-19 pandemic hit, the resulting safety precautions such as social distancing, isolating, hand-washing, and masking were enough to drive the virus into extinction completely.
Because the strain hasn’t been circulating since 2020, the FDA elected to remove the Yamagata strain from the seasonal flu vaccine. This will mark the first time since 2012 that the annual flu shot will be trivalent (three-component) rather than quadrivalent (four-component).
Should I still get the flu shot?
The flu shot will protect against fewer strains this year—but that doesn’t mean we should skip it. Influenza places a substantial health burden on the United States every year, responsible for hundreds of thousands of hospitalizations and tens of thousands of deaths. The flu shot has been shown to prevent millions of illnesses each year (more than six million during the 2022-2023 season). And while it’s still possible to catch the flu after getting the flu shot, studies show that people are far less likely to be hospitalized or die when they’re vaccinated.
Another unexpected benefit of dropping the Yamagata strain from the seasonal vaccine? This will possibly make production of the flu vaccine faster, and enable manufacturers to make more vaccines, helping countries who have a flu vaccine shortage and potentially saving millions more lives.
After his grandmother’s dementia diagnosis, one man invented a snack to keep her healthy and hydrated.
On a visit to his grandmother’s nursing home in 2016, college student Lewis Hornby made a shocking discovery: Dehydration is a common (and dangerous) problem among seniors—especially those that are diagnosed with dementia.
Hornby’s grandmother, Pat, had always had difficulty keeping up her water intake as she got older, a common issue with seniors. As we age, our body composition changes, and we naturally hold less water than younger adults or children, so it’s easier to become dehydrated quickly if those fluids aren’t replenished. What’s more, our thirst signals diminish naturally as we age as well—meaning our body is not as good as it once was in letting us know that we need to rehydrate. This often creates a perfect storm that commonly leads to dehydration. In Pat’s case, her dehydration was so severe she nearly died.
When Lewis Hornby visited his grandmother at her nursing home afterward, he learned that dehydration especially affects people with dementia, as they often don’t feel thirst cues at all, or may not recognize how to use cups correctly. But while dementia patients often don’t remember to drink water, it seemed to Hornby that they had less problem remembering to eat, particularly candy.
Where people with dementia often forget to drink water, they're more likely to pick up a colorful snack, Hornby found. alzheimers.org.uk
Hornby wanted to create a solution for elderly people who struggled keeping their fluid intake up. He spent the next eighteen months researching and designing a solution and securing funding for his project. In 2019, Hornby won a sizable grant from the Alzheimer’s Society, a UK-based care and research charity for people with dementia and their caregivers. Together, through the charity’s Accelerator Program, they created a bite-sized, sugar-free, edible jelly drop that looked and tasted like candy. The candy, called Jelly Drops, contained 95% water and electrolytes—important minerals that are often lost during dehydration. The final product launched in 2020—and was an immediate success. The drops were able to provide extra hydration to the elderly, as well as help keep dementia patients safe, since dehydration commonly leads to confusion, hospitalization, and sometimes even death.
Not only did Jelly Drops quickly become a favorite snack among dementia patients in the UK, but they were able to provide an additional boost of hydration to hospital workers during the pandemic. In NHS coronavirus hospital wards, patients infected with the virus were regularly given Jelly Drops to keep their fluid levels normal—and staff members snacked on them as well, since long shifts and personal protective equipment (PPE) they were required to wear often left them feeling parched.
In April 2022, Jelly Drops launched in the United States. The company continues to donate 1% of its profits to help fund Alzheimer’s research.