Should Your Employer Have Access to Your Fitbit Data?
The modern world today has become more dependent on technology than ever. We want to achieve maximal tasks with minimal human effort. And increasingly, we want our technology to go wherever we go.
Wearable devices operate by collecting massive amounts of personal information on unsuspecting users.
At work, we are leveraging the immense computing power of tablet computers. To supplement social interaction, we have turned to smartphones and social media. Lately, another novel and exciting technology is on the rise: wearable devices that track our personal data, like the FitBit and the Apple Watch. The interest and demand for these devices is soaring. CCS Insight, an organization that studies developments in digital markets, has reported that the market for wearables will be worth $25 billion by next year. By 2020, it is estimated that a staggering 411 million smart wearable devices will be sold.
Although wearables include smartwatches, fitness bands, and VR/AR headsets, devices that monitor and track health data are gaining most of the traction. Apple has announced the release of Apple Health Records, a new feature for their iOS operating system that will allow users to view and store medical records on their smart devices. Hospitals such as NYU Langone have started to use this feature on Apple Watch to send push notifications to ER doctors for vital lab results, so that they can review and respond immediately. Previously, Google partnered with Novartis to develop smart contact lens that can monitor blood glucose levels in diabetic patients, although the idea has been in limbo.
As these examples illustrate, these wearable devices present unique opportunities to address some of the most intractable problems in modern healthcare. At the same time, these devices operate by collecting massive personal information on unsuspecting users and pose unique ethical challenges regarding informed consent, user privacy, and health data security. If there is a lesson from the recent Facebook debacle, it is that big data applications, even those using anonymized data, are not immune from malicious third-party data-miners.
On consent: do users of wearable devices really know what they are getting into? There is very little evidence to support the claim that consent obtained on signing up can be considered 'informed.' A few months ago, researchers from Australia published an interesting study that surveyed users of wearable devices that monitor and track health data. The survey reported that users were "highly concerned" regarding issues of privacy and considered informed consent "very important" when asked about data sharing with third parties (for advertising or data analysis).
However, users were not aware of how privacy and informed consent were related. In essence, while they seemed to understand the abstract importance of privacy, they were unaware that clicking on the "I agree" dialog box entailed giving up control of their personal health information. This is not surprising, given that most user agreements for online applications or wearable devices are often in lengthy legalese.
Companies could theoretically use their employees' data to motivate desired behavior, throwing a modern wrench into the concept of work/life balance.
Privacy of health data is another unexamined ethical question. Although wearable devices have traditionally been used for promotion of healthy lifestyles (through fitness tracking) and ease of use (such as the call and message features on Apple Watch), increasing interest is coming from corporations. Tractica, a market research firm that studies trends in wearable devices, reports that corporate consumers will account for 17 percent of the market share in wearable devices by 2020 (current market share stands at 1 percent). This is because wearable devices, loaded with several sensors, provide unique insights to track workers' physical activity, stress levels, sleep, and health information. Companies could theoretically use this information to motivate desired behavior, throwing a modern wrench into the concept of work/life balance.
Since paying for employees' healthcare tends to be one of the largest expenses for employers, using wearable devices is seen as something that can boost the bottom line, while enhancing productivity. Even if one considers it reasonable to devise policies that promote productivity, we have yet to determine ethical frameworks that can prevent discrimination against those who may not be able-bodied, and to determine how much control employers ought to exert over the lifestyle of employees.
To be clear, wearable smart devices can address unique challenges in healthcare and elsewhere, but the focus needs to shift toward the user's needs. Data collection practices should also reflect this shift.
Privacy needs to be incorporated by design and not as an afterthought. If we were to read privacy policies properly, it could take some 180 to 300 hours per year per person. This needs to change. Privacy and consent policies ought to be in clear, simple language. If using your device means ultimately sharing your data with doctors, food manufacturers, insurers, companies, dating apps, or whoever might want access to it, then you should know that loud and clear.
The recent implementation of European Union's General Data Protection Regulation (GDPR) is also a move in the right direction. These protections include firm guidelines for consent, and an ability to withdraw consent; a right to access data, and to know what is being done with user's collected data; inherent privacy protections; notifications of security breach; and, strict penalties for companies that do not comply. For wearable devices in healthcare, collaborations with frontline providers would also reveal which areas can benefit from integrating wearable technology for maximum clinical benefit.
In our pursuit of advancement, we must not erode fundamental rights to privacy and security, and not infringe on the rights of the vulnerable and marginalized.
If current trends are any indication, wearable devices will play a central role in our future lives. In fact, the next generation of wearables will be implanted under our skin. This future is already visible when looking at the worrying rise in biohacking – or grinding, or cybernetic enhancement – where people attempt to enhance the physical capabilities of their bodies with do-it-yourself cybernetic devices (using hacker ethics to justify the practice).
Already, a company in Wisconsin called Three Square Market has become the first U.S. employer to provide rice-grained-sized radio-frequency identification (RFID) chips implanted under the skin between the thumb and forefinger of their employees. The company stated that these RFID chips (also available as wearable rings or bracelets) can be used to login to computers, open doors, or use the copy machines.
Humans have always used technology to push the boundaries of what we can do. But in our pursuit of advancement, we must not erode fundamental rights to privacy and security, and not infringe on the rights of the vulnerable and marginalized. The rise of powerful wearables will also necessitate a global discussion on moral questions such as: what are the boundaries for artificially enhancing the human body, and is hacking our bodies ethically acceptable? We should think long and hard before we answer.
Last week, researchers at the University of Oxford announced that they have received funding to create a brand new way of preventing ovarian cancer: A vaccine. The vaccine, known as OvarianVax, will teach the immune system to recognize and destroy mutated cells—one of the earliest indicators of ovarian cancer.
Understanding Ovarian Cancer
Despite advancements in medical research and treatment protocols over the last few decades, ovarian cancer still poses a significant threat to women’s health. In the United States alone, more than 12,0000 women die of ovarian cancer each year, and only about half of women diagnosed with ovarian cancer survive five or more years past diagnosis. Unlike cervical cancer, there is no routine screening for ovarian cancer, so it often goes undetected until it has reached advanced stages. Additionally, the primary symptoms of ovarian cancer—frequent urination, bloating, loss of appetite, and abdominal pain—can often be mistaken for other non-cancerous conditions, delaying treatment.
An American woman has roughly a one percent chance of developing ovarian cancer throughout her lifetime. However, these odds increase significantly if she has inherited mutations in the BRCA1 or BRCA2 genes. Women who carry these mutations face a 46% lifetime risk for ovarian and breast cancers.
An Unlikely Solution
To address this escalating health concern, the organization Cancer Research UK has invested £600,000 over the next three years in research aimed at creating a vaccine, which would destroy cancerous cells before they have a chance to develop any further.
Researchers at the University of Oxford are at the forefront of this initiative. With funding from Cancer Research UK, scientists will use tissue samples from the ovaries and fallopian tubes of patients currently battling ovarian cancer. Using these samples, University of Oxford scientists will create a vaccine to recognize certain proteins on the surface of ovarian cancer cells known as tumor-associated antigens. The vaccine will then train that person’s immune system to recognize the cancer markers and destroy them.
The next step
Once developed, the vaccine will first be tested in patients with the disease, to see if their ovarian tumors will shrink or disappear. Then, the vaccine will be tested in women with the BRCA1 or BRCA2 mutations as well as women in the general population without genetic mutations, to see whether the vaccine can prevent the cancer altogether.
While the vaccine still has “a long way to go,” according to Professor Ahmed Ahmed, Director of Oxford University’s ovarian cancer cell laboratory, he is “optimistic” about the results.
“We need better strategies to prevent ovarian cancer,” said Ahmed in a press release from the University of Oxford. “Currently, women with BRCA1/2 mutations are offered surgery which prevents cancer but robs them of the chance to have children afterward.
Teaching the immune system to recognize the very early signs of cancer is a tough challenge. But we now have highly sophisticated tools which give us real insights into how the immune system recognizes ovarian cancer. OvarianVax could offer the solution.”
How sharing, hearing, and remembering positive stories can help shape our brains for the better
Across cultures and through millennia, human beings have always told stories. Whether it’s a group of boy scouts around a campfire sharing ghost stories or the paleolithic Cro-Magnons etching pictures of bison on cave walls, researchers believe that storytelling has been universal to human beings since the development of language.
But storytelling was more than just a way for our ancestors to pass the time. Researchers believe that storytelling served an important evolutionary purpose, helping humans learn empathy, share important information (such as where predators were or what berries were safe to eat), as well as strengthen social bonds. Quite literally, storytelling has made it possible for the human race to survive.
Today, neuroscientists are discovering that storytelling is just as important now as it was millions of years ago. Particularly in sharing positive stories, humans can more easily form relational bonds, develop a more flexible perspective, and actually grow new brain circuitry that helps us survive. Here’s how.
How sharing stories positively impacts the brain
When human beings share stories, it increases the levels of certain neurochemicals in the brain, neuroscientists have found. In a 2021 study published in Proceedings of the National Academy of Sciences (PNAS), Swedish researchers found that simply hearing a story could make hospitalized children feel better, compared to other hospitalized children who played a riddle game for the same amount of time. In their research, children in the intensive care unit who heard stories for just 30 minutes had higher levels of oxytocin, a hormone that promotes positive feelings and is linked to relaxation, trust, social connectedness, and overall psychological stability. Furthermore, the same children showed lower levels of cortisol, a hormone associated with stress. Afterward, the group of children who heard stories tended to describe their hospital experiences more positively, and even reported lower levels of pain.
Annie Brewster, MD, knows the positive effect of storytelling from personal experience. An assistant professor at Harvard Medical School and the author of The Healing Power of Storytelling: Using Personal Narrative to Navigate Illness, Trauma, and Loss, Brewster started sharing her personal experience with chronic illness after being diagnosed with multiple sclerosis in 2001. In doing so, Brewster says it has enabled her to accept her diagnosis and integrate it into her identity. Brewster believes so much in the power of hearing and sharing stories that in 2013 she founded Health Story Collaborative, a forum for others to share their mental and physical health challenges.“I wanted to hear stories of people who had found ways to move forward in positive ways, in spite of health challenges,” Brewster said. In doing so, Brewster believes people with chronic conditions can “move closer to self-acceptance and self-love.”
While hearing and sharing positive stories has been shown to increase oxytocin and other “feel good” chemicals, simply remembering a positive story has an effect on our brains as well. Mark Hoelterhoff, PhD, a lecturer in clinical psychology at the University of Edinburgh, recalling and “savoring” a positive story, thought, or feedback “begins to create new brain circuitry—a new neural network that’s geared toward looking for the positive,” he says. Over time, other research shows, savoring positive stories or thoughts can literally change the shape of your brain, hard-wiring someone to see things in a more positive light.How stories can change your behavior
In 2009, Paul Zak, PhD, a neuroscientist and professor at Claremont Graduate University, set out to measure how storytelling can actually change human behavior for the better. In his study, Zak wanted to measure the behavioral effects of oxytocin, and did this by showing test subjects two short video clips designed to elicit an emotional response.
In the first video they showed the study participants, a father spoke to the camera about his two-year-old son, Ben, who had been diagnosed with terminal brain cancer. The father told the audience that he struggled to connect with and enjoy Ben, as Ben had only a few months left to live. In the end, the father finds the strength to stay emotionally connected to his son until he dies.
The second video clip, however, was much less emotional. In that clip, the same father and son are shown spending the day at the zoo. Ben is only suggested to have cancer (he is bald from chemotherapy and referred to as a ‘miracle’, but the cancer isn’t mentioned directly). The second story lacked the dramatic narrative arc of the first video.
Zak’s team took blood before and after the participants watched one of the two videos and found that the first story increased the viewers’ cortisol and oxytocin, suggesting that they felt distress over the boy’s diagnosis and empathy toward the boy and his father. The second narrative, however, didn’t increase oxytocin or cortisol at all.
But Zak took the experiment a step further. After the movie clips, his team gave the study participants a chance to share money with a stranger in the lab. The participants who had an increase in cortisol and oxytocin were more likely to donate money generously. The participants who had increased cortisol and oxytocin were also more likely to donate money to a charity that works with children who are ill. Zak also found that the amount of oxytocin that was released was correlated with how much money people felt comfortable giving—in other words, the more oxytocin that was released, the more generous they felt, and the more money they donated.
How storytelling strengthens our bond with others
Sharing, hearing, and remembering stories can be a powerful tool for social change–not only in the way it changes our brain and our behavior, but also because it can positively affect our relationships with other people
Emotional stimulation from telling stories, writes Zak, is the foundation for empathy, and empathy strengthens our relationships with other people. “By knowing someone’s story—where they come from, what they do, and who you might know in common—relationships with strangers are formed.”
But why are these relationships important for humanity? Because human beings can use storytelling to build empathy and form relationships, it enables them to “engage in the kinds of large-scale cooperation that builds massive bridges and sends humans into space,” says Zak.
Storytelling, Zak found, and the oxytocin release that follows, also makes people more sensitive to social cues. This sensitivity not only motivates us to form relationships, but also to engage with other people and offer help, particularly if the other person seems to need help.
But as Zak found in his experiments, the type of storytelling matters when it comes to affecting relationships. Where Zak found that storytelling with a dramatic arc helps release oxytocin and cortisol, enabling people to feel more empathic and generous, other researchers have found that sharing happy stories allows for greater closeness between individuals and speakers. A group of Chinese researchers found that, compared to emotionally-neutral stories, happy stories were more “emotionally contagious.” Test subjects who heard happy stories had greater activation in certain areas of their brains, experienced more significant, positive changes in their mood, and felt a greater sense of closeness between themselves and the speaker.
“This finding suggests that when individuals are happy, they become less self-focused and then feel more intimate with others,” the authors of the study wrote. “Therefore, sharing happiness could strengthen interpersonal bonding.” The researchers went on to say that this could lead to developing better social networks, receiving more social support, and leading more successful social lives.
Since the start of the COVID pandemic, social isolation, loneliness, and resulting mental health issues have only gotten worse. In light of this, it’s safe to say that hearing, sharing, and remembering stories isn’t just something we can do for entertainment. Storytelling has always been central to the human experience, and now more than ever it’s become something crucial for our survival.
Want to know how you can reap the benefits of hearing happy stories? Keep an eye out for Upworthy’s first book, GOOD PEOPLE: Stories from the Best of Humanity, published by National Geographic/Disney, available on September 3, 2024. GOOD PEOPLE is a much-needed trove of life-affirming stories told straight from the heart. Handpicked from Upworthy’s community, these 101 stories speak to the breadth, depth, and beauty of the human experience, reminding us we have a lot more in common than we realize.