Slowing Aging Could Transform Society As We Know It
People's lives have been getting longer for more than a century. In 1900, in even the wealthiest countries, life expectancy was under 50, according to the World Health Organization. By 2015, the worldwide average was 74, and a girl born in Japan that year could expect to live to 87. Most of that extra lifespan came from improvements in nutrition and sanitation, and the development of vaccines and antibiotics.
People's lives have been getting longer for more than a century. In 1900, in even the wealthiest countries, life expectancy was under 50, according to the World Health Organization. By 2015, the worldwide average was 74, and a girl born in Japan that year could expect to live to 87. Most of that extra lifespan came from improvements in nutrition and sanitation, and the development of vaccines and antibiotics.
The question is, how will slowing aging change society?
But now scientists are trying to move beyond just eliminating the diseases that kill us to actually slowing the aging process itself. By developing new drugs to tackle the underlying mechanisms that make our bodies grow old and frail, researchers hope to give people many more years of healthy life. The question is, how will that change society?
There are several biological mechanisms that affect aging. One involves how cells react when they're damaged. Some die, but others enter a state called senescence, in which they halt their normal growth and send out signals that something's gone wrong. That signaling causes inflammation at the sight of a wound, for instance, and triggers the body's repair processes. Once everything is back to normal, the senescent cells die off and the inflammation fades. But as we age, the machinery for clearing senescent cells becomes less efficient and they begin to pile up. Some researchers think that this accumulation of senescent cells is what causes chronic inflammation, which has been implicated in conditions such as heart disease and diabetes.
The first clinical trial in humans of senolytic drugs is happening now.
In 2015, researchers at the Mayo Clinic in Minnesota and the Scripps Research Institute in Florida tested the first so-called senolytic drugs, which cause senescent cells to die. After the scientists treated mice with a combination of an anti-cancer drug and a plant pigment that can act as an antioxidant, some of the senescent cells shrank away and caused the mouse's heart function to revert to that of a much younger mouse.
"That suggests that senescence isn't just a consequence of aging, it's actually a driver of aging," says Paul Robbins, a professor of molecular medicine at Scripps and one of the researchers involved. Other animal studies have found that reducing the number of senescent cells improves a variety of age-related conditions, such as frailty, diabetes, liver disease, pulmonary fibrosis, and osteoporosis.
Now the same researchers are moving those tests to humans in the first clinical trials of senolytic drugs. In July 2016, the Mayo Clinic launched what may be the first clinical trial of senolytic therapy, studying the effect of the two drugs, called dasatinib and quercetin, on people with chronic kidney disease, which they hope to complete in 2021. Meanwhile Mayo and Scripps researchers have identified six different biochemical pathways that give rise to senescence, along with several drug candidates that target those pathways. Robbins says it's likely that different drugs will work better for different cells in the body.
Would radical life extension lead to moral deterioration, risk aversion, and an abandonment of creativity?
In Robbins' work, treating mice with senolytic drugs has extended their median lifespan—the age at which half the animals in his experiment have died—by about 30 percent, but hasn't extended the maximum lifespan. In other words, the oldest mice treated with the drugs died at the same age as mice who hadn't been treated, but more of the mice who received senolytics lived to that ripe old age. The same may turn out to be true for humans, with more people living to the limits of the lifespan—estimated by some to be about 115—but no one living much longer. On the other hand, Robbins says, it's early days for these therapies, and it may turn out that delaying aging actually does push the limit of life farther out.
Others expect more radical extensions of human life; British gerontologist Aubrey DeGray talks about people living for 1000 years, and people who call themselves transhumanists imagine replacing body parts as they wear out, or merging our minds with computers to make us essentially immortal. Brian Green, an ethicist at Santa Clara University in California, finds that concept horrifying. He fears it would make people value their own lives too highly, demoting other moral goods such as self-sacrifice or concern for the environment. "It kind of lends itself to a moral myopia," he says. "Humans work better if they have a goal beyond their own survival." And people who live for centuries might become averse to risk, because with longer lives they have more to lose if they were to accidentally die, and might be resistant to change, draining the world of creativity.
Most researchers are focused on "extending the 'healthspan,' so that the people who live into their 90s are vigorous and disease-free."
He's not too worried, though, that that's where studies such as the Mayo Clinic's are headed, and supports that sort of research. "Hopefully these things will work, and they'll help us live a little bit longer," Green says, "but the idea of radical life extension where we're going to live indefinitely longer, I think that is very unrealistic."
Most of the researchers working on combatting aging don't, in fact, talk of unlimited lifespans. Rather, they talk about extending the "healthspan," so that the people who live into their 90s are vigorous and disease-free up until nearly the end of their lives.
If scientists can lengthen life while reducing the number of years people suffer with dementia or infirmity, that could be beneficial, says Stephen Post, a professor of medicine and director of the Center for Medical Humanities, Compassionate Care, and Bioethics at Stony Brook University in New York. But even increasing the population of vigorous 90-somethings might have negative implications for society. "What would we do with all these people who are living so long?" he asks. "Would we stop having children? Would we never retire?"
Adding 2.2 healthy years to the U.S. life by delaying aging could benefit the economy by $7.1 trillion over 50 years.
If people keep working well past their 60s, that could mean there would be fewer jobs available for younger people, says Maxwell Mehlman, professor of bioethics at Case Western Reserve University's School of Law in Ohio. Mehlman says society may have to rethink age discrimination laws, which bar firing or refusing to hire people over a certain age, to make room for younger workers. On the other hand, those who choose to retire and live another two or three decades could strain pension and entitlement systems.
But a longer healthspan could reduce costs in the healthcare system, which now are driven disproportionately by older people. Jay Olshansky, an epidemiologist at the University of Illinois at Chicago School of Public Health, has estimated that adding 2.2 healthy years to the U.S. life by delaying aging would benefit the economy by $7.1 trillion over 50 years, as spending on illnesses such as cancer and heart disease drop.
For his part, Robbins says that the scientific conferences in the anti-aging field, which tend to focus on the technical research, should hold more sessions on social and economic impacts. If anti-aging therapies start extending healthy lifespans, as he and other researchers hope they will within a decade or so, society will need to adjust.
Ultimately, it's an extension of health, not just of longevity, that will benefit us. Extra decades of senescence do nobody any good. As Green says, "Nobody wants to live in a nursing home for 1000 years."
Researchers claimed they built a breakthrough superconductor. Social media shot it down almost instantly.
Harsh Mathur was a graduate physics student at Yale University in late 1989 when faculty announced they had failed to replicate claims made by scientists at the University of Utah and the University of Wolverhampton in England.
Such work is routine. Replicating or attempting to replicate the contraptions, calculations and conclusions crafted by colleagues is foundational to the scientific method. But in this instance, Yale’s findings were reported globally.
“I had a ringside view, and it was crazy,” recalls Mathur, now a professor of physics at Case Western Reserve University in Ohio.
Yale’s findings drew so much attention because initial experiments by Stanley Pons of Utah and Martin Fleischmann of Wolverhampton led to a startling claim: They were able to fuse atoms at room temperature – a scientific El Dorado known as “cold fusion.”
Nuclear fusion powers the stars in the universe. However, star cores must be at least 23.4 million degrees Fahrenheit and under extraordinary pressure to achieve fusion. Pons and Fleischmann claimed they had created an almost limitless source of power achievable at any temperature.
Like fusion, superconductivity can only be achieved in mostly impractical circumstances.
But about six months after they made their startling announcement, the pair’s findings were discredited by researchers at Yale and the California Institute of Technology. It was one of the first instances of a major scientific debunking covered by mass media.
Some scholars say the media attention for cold fusion stemmed partly from a dazzling announcement made three years prior in 1986: Scientists had created the first “superconductor” – material that could transmit electrical current with little or no resistance. It drew global headlines – and whetted the public’s appetite for announcements of scientific breakthroughs that could cause economic transformations.
But like fusion, superconductivity can only be achieved in mostly impractical circumstances: It must operate either at temperatures of at least negative 100 degrees Fahrenheit, or under pressures of around 150,000 pounds per square inch. Superconductivity that functions in closer to a normal environment would cut energy costs dramatically while also opening infinite possibilities for computing, space travel and other applications.
In July, a group of South Korean scientists posted material claiming they had created an iron crystalline substance called LK-99 that could achieve superconductivity at slightly above room temperature and at ambient pressure. The group partners with the Quantum Energy Research Centre, a privately-held enterprise in Seoul, and their claims drew global headlines.
Their work was also debunked. But in the age of internet and social media, the process was compressed from half-a-year into days. And it did not require researchers at world-class universities.
One of the most compelling critiques came from Derrick VanGennep. Although he works in finance, he holds a Ph.D. in physics and held a postdoctoral position at Harvard. The South Korean researchers had posted a video of a nugget of LK-99 in what they claimed was the throes of the Meissner effect – an expulsion of the substance’s magnetic field that would cause it to levitate above a magnet. Unless Hollywood magic is involved, only superconducting material can hover in this manner.
That claim made VanGennep skeptical, particularly since LK-99’s levitation appeared unenthusiastic at best. In fact, a corner of the material still adhered to the magnet near its center. He thought the video demonstrated ferromagnetism – two magnets repulsing one another. He mixed powdered graphite with super glue, stuck iron filings to its surface and mimicked the behavior of LK-99 in his own video, which was posted alongside the researchers’ video.
VanGennep believes the boldness of the South Korean claim was what led to him and others in the scientific community questioning it so quickly.
“The swift replication attempts stemmed from the combination of the extreme claim, the fact that the synthesis for this material is very straightforward and fast, and the amount of attention that this story was getting on social media,” he says.
But practicing scientists were suspicious of the data as well. Michael Norman, director of the Argonne Quantum Institute at the Argonne National Laboratory just outside of Chicago, had doubts immediately.
Will this saga hurt or even affect the careers of the South Korean researchers? Possibly not, if the previous fusion example is any indication.
“It wasn’t a very polished paper,” Norman says of the Korean scientists’ work. That opinion was reinforced, he adds, when it turned out the paper had been posted online by one of the researchers prior to seeking publication in a peer-reviewed journal. Although Norman and Mathur say that is routine with scientific research these days, Norman notes it was posted by one of the junior researchers over the doubts of two more senior scientists on the project.
Norman also raises doubts about the data reported. Among other issues, he observes that the samples created by the South Korean researchers contained traces of copper sulfide that could inadvertently amplify findings of conductivity.
The lack of the Meissner effect also caught Mathur’s attention. “Ferromagnets tend to be unstable when they levitate,” he says, adding that the video “just made me feel unconvinced. And it made me feel like they hadn't made a very good case for themselves.”
Will this saga hurt or even affect the careers of the South Korean researchers? Possibly not, if the previous fusion example is any indication. Despite being debunked, cold fusion claimants Pons and Fleischmann didn’t disappear. They moved their research to automaker Toyota’s IMRA laboratory in France, which along with the Japanese government spent tens of millions of dollars on their work before finally pulling the plug in 1998.
Fusion has since been created in laboratories, but being unable to reproduce the density of a star’s core would require excruciatingly high temperatures to achieve – about 160 million degrees Fahrenheit. A recently released Government Accountability Office report concludes practical fusion likely remains at least decades away.
However, like Pons and Fleischman, the South Korean researchers are not going anywhere. They claim that LK-99’s Meissner effect is being obscured by the fact the substance is both ferromagnetic and diamagnetic. They have filed for a patent in their country. But for now, those claims remain chimerical.
In the meantime, the consensus as to when a room temperature superconductor will be achieved is mixed. VenGennep – who studied the issue during his graduate and postgraduate work – puts the chance of creating such a superconductor by 2050 at perhaps 50-50. Mathur believes it could happen sooner, but adds that research on the topic has been going on for nearly a century, and that it has seen many plateaus.
“There's always this possibility that there's going to be something out there that we're going to discover unexpectedly,” Norman notes. The only certainty in this age of social media is that it will be put through the rigors of replication instantly.
Scientists implant brain cells to counter Parkinson's disease
Martin Taylor was only 32 when he was diagnosed with Parkinson's, a disease that causes tremors, stiff muscles and slow physical movement - symptoms that steadily get worse as time goes on.
“It's horrible having Parkinson's,” says Taylor, a data analyst, now 41. “It limits my ability to be the dad and husband that I want to be in many cruel and debilitating ways.”
Today, more than 10 million people worldwide live with Parkinson's. Most are diagnosed when they're considerably older than Taylor, after age 60. Although recent research has called into question certain aspects of the disease’s origins, Parkinson’s eventually kills the nerve cells in the brain that produce dopamine, a signaling chemical that carries messages around the body to control movement. Many patients have lost 60 to 80 percent of these cells by the time they are diagnosed.
For years, there's been little improvement in the standard treatment. Patients are typically given the drug levodopa, a chemical that's absorbed by the brain’s nerve cells, or neurons, and converted into dopamine. This drug addresses the symptoms but has no impact on the course of the disease as patients continue to lose dopamine producing neurons. Eventually, the treatment stops working effectively.
BlueRock Therapeutics, a cell therapy company based in Massachusetts, is taking a different approach by focusing on the use of stem cells, which can divide into and generate new specialized cells. The company makes the dopamine-producing cells that patients have lost and inserts these cells into patients' brains. “We have a disease with a high unmet need,” says Ahmed Enayetallah, the senior vice president and head of development at BlueRock. “We know [which] cells…are lost to the disease, and we can make them. So it really came together to use stem cells in Parkinson's.”
In a phase 1 research trial announced late last month, patients reported that their symptoms had improved after a year of treatment. Brain scans also showed an increased number of neurons generating dopamine in patients’ brains.
Increases in dopamine signals
The recent phase 1 trial focused on deploying BlueRock’s cell therapy, called bemdaneprocel, to treat 12 patients suffering from Parkinson’s. The team developed the new nerve cells and implanted them into specific locations on each side of the patient's brain through two small holes in the skull made by a neurosurgeon. “We implant cells into the places in the brain where we think they have the potential to reform the neural networks that are lost to Parkinson's disease,” Enayetallah says. The goal is to restore motor function to patients over the long-term.
Five patients were given a relatively low dose of cells while seven got higher doses. Specialized brain scans showed evidence that the transplanted cells had survived, increasing the overall number of dopamine producing cells. The team compared the baseline number of these cells before surgery to the levels one year later. “The scans tell us there is evidence of increased dopamine signals in the part of the brain affected by Parkinson's,” Enayetallah says. “Normally you’d expect the signal to go down in untreated Parkinson’s patients.”
"I think it has a real chance to reverse motor symptoms, essentially replacing a missing part," says Tilo Kunath, a professor of regenerative neurobiology at the University of Edinburgh.
The team also asked patients to use a specific type of home diary to log the times when symptoms were well controlled and when they prevented normal activity. After a year of treatment, patients taking the higher dose reported symptoms were under control for an average of 2.16 hours per day above their baselines. At the smaller dose, these improvements were significantly lower, 0.72 hours per day. The higher-dose patients reported a corresponding decrease in the amount of time when symptoms were uncontrolled, by an average of 1.91 hours, compared to 0.75 hours for the lower dose. The trial was safe, and patients tolerated the year of immunosuppression needed to make sure their bodies could handle the foreign cells.
Claire Bale, the associate director of research at Parkinson's U.K., sees the promise of BlueRock's approach, while noting the need for more research on a possible placebo effect. The trial participants knew they were getting the active treatment, and placebo effects are known to be a potential factor in Parkinson’s research. Even so, “The results indicate that this therapy produces improvements in symptoms for Parkinson's, which is very encouraging,” Bale says.
Tilo Kunath, a professor of regenerative neurobiology at the University of Edinburgh, also finds the results intriguing. “I think it's excellent,” he says. “I think it has a real chance to reverse motor symptoms, essentially replacing a missing part.” However, it could take time for this therapy to become widely available, Kunath says, and patients in the late stages of the disease may not benefit as much. “Data from cell transplantation with fetal tissue in the 1980s and 90s show that cells did not survive well and release dopamine in these [late-stage] patients.”
Searching for the right approach
There's a long history of using cell therapy as a treatment for Parkinson's. About four decades ago, scientists at the University of Lund in Sweden developed a method in which they transferred parts of fetal brain tissue to patients with Parkinson's so that their nerve cells would produce dopamine. Many benefited, and some were able to stop their medication. However, the use of fetal tissue was highly controversial at that time, and the tissues were difficult to obtain. Later trials in the U.S. showed that people benefited only if a significant amount of the tissue was used, and several patients experienced side effects. Eventually, the work lost momentum.
“Like many in the community, I'm aware of the long history of cell therapy,” says Taylor, the patient living with Parkinson's. “They've long had that cure over the horizon.”
In 2000, Lorenz Studer led a team at the Memorial Sloan Kettering Centre, in New York, to find the chemical signals needed to get stem cells to differentiate into cells that release dopamine. Back then, the team managed to make cells that produced some dopamine, but they led to only limited improvements in animals. About a decade later, in 2011, Studer and his team found the specific signals needed to guide embryonic cells to become the right kind of dopamine producing cells. Their experiments in mice, rats and monkeys showed that their implanted cells had a significant impact, restoring lost movement.
Studer then co-founded BlueRock Therapeutics in 2016. Forming the most effective stem cells has been one of the biggest challenges, says Enayetallah, the BlueRock VP. “It's taken a lot of effort and investment to manufacture and make the cells at the right scale under the right conditions.” The team is now using cells that were first isolated in 1998 at the University of Wisconsin, a major advantage because they’re available in a virtually unlimited supply.
Other efforts underway
In the past several years, University of Lund researchers have begun to collaborate with the University of Cambridge on a project to use embryonic stem cells, similar to BlueRock’s approach. They began clinical trials this year.
A company in Japan called Sumitomo is using a different strategy; instead of stem cells from embryos, they’re reprogramming adults' blood or skin cells into induced pluripotent stem cells - meaning they can turn into any cell type - and then directing them into dopamine producing neurons. Although Sumitomo started clinical trials earlier than BlueRock, they haven’t yet revealed any results.
“It's a rapidly evolving field,” says Emma Lane, a pharmacologist at the University of Cardiff who researches clinical interventions for Parkinson’s. “But BlueRock’s trial is the first full phase 1 trial to report such positive findings with stem cell based therapies.” The company’s upcoming phase 2 research will be critical to show how effectively the therapy can improve disease symptoms, she added.
The cure over the horizon
BlueRock will continue to look at data from patients in the phase 1 trial to monitor the treatment’s effects over a two-year period. Meanwhile, the team is planning the phase 2 trial with more participants, including a placebo group.
For patients with Parkinson’s like Martin Taylor, the therapy offers some hope, though Taylor recognizes that more research is needed.
BlueRock Therapeutics
“Like many in the community, I'm aware of the long history of cell therapy,” he says. “They've long had that cure over the horizon.” His expectations are somewhat guarded, he says, but, “it's certainly positive to see…movement in the field again.”
"If we can demonstrate what we’re seeing today in a more robust study, that would be great,” Enayetallah says. “At the end of the day, we want to address that unmet need in a field that's been waiting for a long time.”
Editor's note: The company featured in this piece, BlueRock Therapeutics, is a portfolio company of Leaps by Bayer, which is a sponsor of Leaps.org. BlueRock was acquired by Bayer Pharmaceuticals in 2019. Leaps by Bayer and other sponsors have never exerted influence over Leaps.org content or contributors.