Slowing Aging Could Transform Society As We Know It
People's lives have been getting longer for more than a century. In 1900, in even the wealthiest countries, life expectancy was under 50, according to the World Health Organization. By 2015, the worldwide average was 74, and a girl born in Japan that year could expect to live to 87. Most of that extra lifespan came from improvements in nutrition and sanitation, and the development of vaccines and antibiotics.
People's lives have been getting longer for more than a century. In 1900, in even the wealthiest countries, life expectancy was under 50, according to the World Health Organization. By 2015, the worldwide average was 74, and a girl born in Japan that year could expect to live to 87. Most of that extra lifespan came from improvements in nutrition and sanitation, and the development of vaccines and antibiotics.
The question is, how will slowing aging change society?
But now scientists are trying to move beyond just eliminating the diseases that kill us to actually slowing the aging process itself. By developing new drugs to tackle the underlying mechanisms that make our bodies grow old and frail, researchers hope to give people many more years of healthy life. The question is, how will that change society?
There are several biological mechanisms that affect aging. One involves how cells react when they're damaged. Some die, but others enter a state called senescence, in which they halt their normal growth and send out signals that something's gone wrong. That signaling causes inflammation at the sight of a wound, for instance, and triggers the body's repair processes. Once everything is back to normal, the senescent cells die off and the inflammation fades. But as we age, the machinery for clearing senescent cells becomes less efficient and they begin to pile up. Some researchers think that this accumulation of senescent cells is what causes chronic inflammation, which has been implicated in conditions such as heart disease and diabetes.
The first clinical trial in humans of senolytic drugs is happening now.
In 2015, researchers at the Mayo Clinic in Minnesota and the Scripps Research Institute in Florida tested the first so-called senolytic drugs, which cause senescent cells to die. After the scientists treated mice with a combination of an anti-cancer drug and a plant pigment that can act as an antioxidant, some of the senescent cells shrank away and caused the mouse's heart function to revert to that of a much younger mouse.
"That suggests that senescence isn't just a consequence of aging, it's actually a driver of aging," says Paul Robbins, a professor of molecular medicine at Scripps and one of the researchers involved. Other animal studies have found that reducing the number of senescent cells improves a variety of age-related conditions, such as frailty, diabetes, liver disease, pulmonary fibrosis, and osteoporosis.
Now the same researchers are moving those tests to humans in the first clinical trials of senolytic drugs. In July 2016, the Mayo Clinic launched what may be the first clinical trial of senolytic therapy, studying the effect of the two drugs, called dasatinib and quercetin, on people with chronic kidney disease, which they hope to complete in 2021. Meanwhile Mayo and Scripps researchers have identified six different biochemical pathways that give rise to senescence, along with several drug candidates that target those pathways. Robbins says it's likely that different drugs will work better for different cells in the body.
Would radical life extension lead to moral deterioration, risk aversion, and an abandonment of creativity?
In Robbins' work, treating mice with senolytic drugs has extended their median lifespan—the age at which half the animals in his experiment have died—by about 30 percent, but hasn't extended the maximum lifespan. In other words, the oldest mice treated with the drugs died at the same age as mice who hadn't been treated, but more of the mice who received senolytics lived to that ripe old age. The same may turn out to be true for humans, with more people living to the limits of the lifespan—estimated by some to be about 115—but no one living much longer. On the other hand, Robbins says, it's early days for these therapies, and it may turn out that delaying aging actually does push the limit of life farther out.
Others expect more radical extensions of human life; British gerontologist Aubrey DeGray talks about people living for 1000 years, and people who call themselves transhumanists imagine replacing body parts as they wear out, or merging our minds with computers to make us essentially immortal. Brian Green, an ethicist at Santa Clara University in California, finds that concept horrifying. He fears it would make people value their own lives too highly, demoting other moral goods such as self-sacrifice or concern for the environment. "It kind of lends itself to a moral myopia," he says. "Humans work better if they have a goal beyond their own survival." And people who live for centuries might become averse to risk, because with longer lives they have more to lose if they were to accidentally die, and might be resistant to change, draining the world of creativity.
Most researchers are focused on "extending the 'healthspan,' so that the people who live into their 90s are vigorous and disease-free."
He's not too worried, though, that that's where studies such as the Mayo Clinic's are headed, and supports that sort of research. "Hopefully these things will work, and they'll help us live a little bit longer," Green says, "but the idea of radical life extension where we're going to live indefinitely longer, I think that is very unrealistic."
Most of the researchers working on combatting aging don't, in fact, talk of unlimited lifespans. Rather, they talk about extending the "healthspan," so that the people who live into their 90s are vigorous and disease-free up until nearly the end of their lives.
If scientists can lengthen life while reducing the number of years people suffer with dementia or infirmity, that could be beneficial, says Stephen Post, a professor of medicine and director of the Center for Medical Humanities, Compassionate Care, and Bioethics at Stony Brook University in New York. But even increasing the population of vigorous 90-somethings might have negative implications for society. "What would we do with all these people who are living so long?" he asks. "Would we stop having children? Would we never retire?"
Adding 2.2 healthy years to the U.S. life by delaying aging could benefit the economy by $7.1 trillion over 50 years.
If people keep working well past their 60s, that could mean there would be fewer jobs available for younger people, says Maxwell Mehlman, professor of bioethics at Case Western Reserve University's School of Law in Ohio. Mehlman says society may have to rethink age discrimination laws, which bar firing or refusing to hire people over a certain age, to make room for younger workers. On the other hand, those who choose to retire and live another two or three decades could strain pension and entitlement systems.
But a longer healthspan could reduce costs in the healthcare system, which now are driven disproportionately by older people. Jay Olshansky, an epidemiologist at the University of Illinois at Chicago School of Public Health, has estimated that adding 2.2 healthy years to the U.S. life by delaying aging would benefit the economy by $7.1 trillion over 50 years, as spending on illnesses such as cancer and heart disease drop.
For his part, Robbins says that the scientific conferences in the anti-aging field, which tend to focus on the technical research, should hold more sessions on social and economic impacts. If anti-aging therapies start extending healthy lifespans, as he and other researchers hope they will within a decade or so, society will need to adjust.
Ultimately, it's an extension of health, not just of longevity, that will benefit us. Extra decades of senescence do nobody any good. As Green says, "Nobody wants to live in a nursing home for 1000 years."
Breakthrough therapies are breaking patients' banks. Key changes could improve access, experts say.
CSL Behring’s new gene therapy for hemophilia, Hemgenix, costs $3.5 million for one treatment, but helps the body create substances that allow blood to clot. It appears to be a cure, eliminating the need for other treatments for many years at least.
Likewise, Novartis’s Kymriah mobilizes the body’s immune system to fight B-cell lymphoma, but at a cost $475,000. For patients who respond, it seems to offer years of life without the cancer progressing.
These single-treatment therapies are at the forefront of a new, bold era of medicine. Unfortunately, they also come with new, bold prices that leave insurers and patients wondering whether they can afford treatment and, if they can, whether the high costs are worthwhile.
“Most pharmaceutical leaders are there to improve and save people’s lives,” says Jeremy Levin, chairman and CEO of Ovid Therapeutics, and immediate past chairman of the Biotechnology Innovation Organization. If the therapeutics they develop are too expensive for payers to authorize, patients aren’t helped.
“The right to receive care and the right of pharmaceuticals developers to profit should never be at odds,” Levin stresses. And yet, sometimes they are.
Leigh Turner, executive director of the bioethics program, University of California, Irvine, notes this same tension between drug developers that are “seeking to maximize profits by charging as much as the market will bear for cell and gene therapy products and other medical interventions, and payers trying to control costs while also attempting to provide access to medical products with promising safety and efficacy profiles.”
Why Payers Balk
Health insurers can become skittish around extremely high prices, yet these therapies often accompany significant overall savings. For perspective, the estimated annual treatment cost for hemophilia exceeds $300,000. With Hemgenix, payers would break even after about 12 years.
But, in 12 years, will the patient still have that insurer? Therein lies the rub. U.S. payers, are used to a “pay-as-you-go” model, in which the lifetime costs of therapies typically are shared by multiple payers over many years, as patients change jobs. Single treatment therapeutics eliminate that cost-sharing ability.
"As long as formularies are based on profits to middlemen…Americans’ healthcare costs will continue to skyrocket,” says Patricia Goldsmith, the CEO of CancerCare.
“There is a phenomenally complex, bureaucratic reimbursement system that has grown, layer upon layer, during several decades,” Levin says. As medicine has innovated, payment systems haven’t kept up.
Therefore, biopharma companies begin working with insurance companies and their pharmacy benefit managers (PBMs), which act on an insurer’s behalf to decide which drugs to cover and by how much, early in the drug approval process. Their goal is to make sophisticated new drugs available while still earning a return on their investment.
New Payment Models
Pay-for-performance is one increasingly popular strategy, Turner says. “These models typically link payments to evidence generation and clinically significant outcomes.”
A biotech company called bluebird bio, for example, offers value-based pricing for Zynteglo, a $2.8 million possible cure for the rare blood disorder known as beta thalassaemia. It generally eliminates patients’ need for blood transfusions. The company is so sure it works that it will refund 80 percent of the cost of the therapy if patients need blood transfusions related to that condition within five years of being treated with Zynteglo.
In his February 2023 State of the Union speech, President Biden proposed three pilot programs to reduce drug costs. One of them, the Cell and Gene Therapy Access Model calls on the federal Centers for Medicare & Medicaid Services to establish outcomes-based agreements with manufacturers for certain cell and gene therapies.
A mortgage-style payment system is another, albeit rare, approach. Amortized payments spread the cost of treatments over decades, and let people change employers without losing their healthcare benefits.
Only about 14 percent of all drugs that enter clinical trials are approved by the FDA. Pharma companies, therefore, have an exigent need to earn a profit.
The new payment models that are being discussed aren’t solutions to high prices, says Bill Kramer, senior advisor for health policy at Purchaser Business Group on Health (PBGH), a nonprofit that seeks to lower health care costs. He points out that innovative pricing models, although well-intended, may distract from the real problem of high prices. They are attempts to “soften the blow. The best thing would be to charge a reasonable price to begin with,” he says.
Instead, he proposes making better use of research on cost and clinical effectiveness. The Institute for Clinical and Economic Review (ICER) conducts such research in the U.S., determining whether the benefits of specific drugs justify their proposed prices. ICER is an independent non-profit research institute. Its reports typically assess the degrees of improvement new therapies offer and suggest prices that would reflect that. “Publicizing that data is very important,” Kramer says. “Their results aren’t used to the extent they could and should be.” Pharmaceutical companies tend to price their therapies higher than ICER’s recommendations.
Drug Development Costs Soar
Drug developers have long pointed to the onerous costs of drug development as a reason for high prices.
A 2020 study found the average cost to bring a drug to market exceeded $1.1 billion, while other studies have estimated overall costs as high as $2.6 billion. The development timeframe is about 10 years. That’s because modern therapeutics target precise mechanisms to create better outcomes, but also have high failure rates. Only about 14 percent of all drugs that enter clinical trials are approved by the FDA. Pharma companies, therefore, have an exigent need to earn a profit.
Skewed Incentives Increase Costs
Pricing isn’t solely at the discretion of pharma companies, though. “What patients end up paying has much more to do with their PBMs than the actual price of the drug,” Patricia Goldsmith, CEO, CancerCare, says. Transparency is vital.
PBMs control patients’ access to therapies at three levels, through price negotiations, pricing tiers and pharmacy management.
When negotiating with drug manufacturers, Goldsmith says, “PBMs exchange a preferred spot on a formulary (the insurer’s or healthcare provider’s list of acceptable drugs) for cash-base rebates.” Unfortunately, 25 percent of the time, those rebates are not passed to insurers, according to the PBGH report.
Then, PBMs use pricing tiers to steer patients and physicians to certain drugs. For example, Kramer says, “Sometimes PBMs put a high-cost brand name drug in a preferred tier and a lower-cost competitor in a less preferred, higher-cost tier.” As the PBGH report elaborates, “(PBMs) are incentivized to include the highest-priced drugs…since both manufacturing rebates, as well as the administrative fees they charge…are calculated as a percentage of the drug’s price.
Finally, by steering patients to certain pharmacies, PBMs coordinate patients’ access to treatments, control patients’ out-of-pocket costs and receive management fees from the pharmacies.
Therefore, Goldsmith says, “As long as formularies are based on profits to middlemen…Americans’ healthcare costs will continue to skyrocket.”
Transparency into drug pricing will help curb costs, as will new payment strategies. What will make the most impact, however, may well be the development of a new reimbursement system designed to handle dramatic, breakthrough drugs. As Kramer says, “We need a better system to identify drugs that offer dramatic improvements in clinical care.”
Each afternoon, kids walk through my neighborhood, on their way back home from school, and almost all of them are walking alone, staring down at their phones. It's a troubling site. This daily parade of the zombie children just can’t bode well for the future.
That’s one reason I felt like Gaia Bernstein’s new book was talking directly to me. A law professor at Seton Hall, Gaia makes a strong argument that people are so addicted to tech at this point, we need some big, system level changes to social media platforms and other addictive technologies, instead of just blaming the individual and expecting them to fix these issues.
Gaia’s book is called Unwired: Gaining Control Over Addictive Technologies. It’s fascinating and I had a chance to talk with her about it for today’s podcast. At its heart, our conversation is really about how and whether we can maintain control over our thoughts and actions, even when some powerful forces are pushing in the other direction.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
We discuss the idea that, in certain situations, maybe it's not reasonable to expect that we’ll be able to enjoy personal freedom and autonomy. We also talk about how to be a good parent when it sometimes seems like our kids prefer to be raised by their iPads; so-called educational video games that actually don’t have anything to do with education; the root causes of tech addictions for people of all ages; and what kinds of changes we should be supporting.
Gaia is Seton’s Hall’s Technology, Privacy and Policy Professor of Law, as well as Co-Director of the Institute for Privacy Protection, and Co-Director of the Gibbons Institute of Law Science and Technology. She’s the founding director of the Institute for Privacy Protection. She created and spearheaded the Institute’s nationally recognized Outreach Program, which educated parents and students about technology overuse and privacy.
Professor Bernstein's scholarship has been published in leading law reviews including the law reviews of Vanderbilt, Boston College, Boston University, and U.C. Davis. Her work has been selected to the Stanford-Yale Junior Faculty Forum and received extensive media coverage. Gaia joined Seton Hall's faculty in 2004. Before that, she was a fellow at the Engelberg Center of Innovation Law & Policy and at the Information Law Institute of the New York University School of Law. She holds a J.S.D. from the New York University School of Law, an LL.M. from Harvard Law School, and a J.D. from Boston University.
Gaia’s work on this topic is groundbreaking I hope you’ll listen to the conversation and then consider pre-ordering her new book. It comes out on March 28.