Soccer Fans, Don’t Root for a Team Based on Genetics
Editor's Note: This op/ed is in response to our Big Question of the month: "Should shared genetics play any role in encouraging sports fans to root for a certain team?"
23andMe is taking a lot of heat as one of the DNA aggregators whose databases may not be secure from prying third-party eyes. That is a huge issue, but the company is engaging in even more troubling behavior—using genetics to sponsor racism.
The ad campaign urges that you choose to root for a team based on genetics—theirs and yours.
There is plenty to condemn when it comes to racism in international sports. Fans taunting black and minority athletes is a huge problem. No sport has been as beset by racial taunting as soccer. Which is why the current advertising campaign by the genetic testing company 23andMe and Fox sports is especially foul.
With the U.S. men's team eliminated from the 2018 FIFA World Cup in Russia, many potential American fans were left without a primary rooting interest in the upcoming summer tournament. And that would be a disaster for Fox, which will be carrying the games.
The network teamed up with 23andMe to urge American soccer fans not to tune out the World Cup. Instead the ad campaign urges that you choose to root for a team based on genetics—theirs and yours. Given the fact that ethnicity and race are mainly cultural and social constructs, not biological, this suggestion seems more 19th than 21st century in terms of its justification.
The ads say, "root for your roots." Send your spit off to 23andMe for a DNA test and you might discover most of your genes came from one of the countries that did qualify for the biggest event in soccer. Saudi Arabia, for example. Or Panama, Argentina, Serbia, Senegal or Iran. So if you and the team have the same genes - voila, you have someone and something to root for. Soccer hooligan bigots everywhere must be thrilled by this twaddle.
There is no correlation between genetics and who is a member of a nation's soccer team. People from many ethnic and racial backgrounds play for many nations. There is no Argentinian or Croatian team genotype. And why would information about your genetic ancestry lead you to root for a particular athlete or team? How about the team's skill, not their skin color or biological makeup?
What genetic difference is it that we are going to root for anyway—the immune system differences between Switzerland and Egypt?
And are there really genes to be found that determine with certainty that you or the team you are watching are really Panamanian? Hardly. Panama is a political entity that came into existence in 1903 not a biological species. And, do we really need an ad campaign telling us, falsely, that the nations of the Earth can be sorted out neatly into clear racial groups based on their heredity? What genetic difference is it that we are going to root for anyway—the immune system differences between Switzerland and Egypt? Markers for bone density between Argentinians and Russians?
The 'root for your roots' campaign comes at a horrible time, just when FIFA is trying to root the racism out of the World Cup. It is built on bogus science about the genetics of how we define nations and ethnic groups. It appeals to the racism in us to pick a team we can root for. And it reinforces racial and ethnic stereotypes about human behavior and nationhood that are rooted in history, culture, economics, colonialism and prejudice, not ancestry, genetics or biology. This is not the way to introduce the world to genetic testing.
[Ed. Note: To read the counter viewpoint, click here. Then visit leapsmag on social media to share your opinion: Who wins this debate?]
A startup aims to make medicines in space
Story by Big Think
On June 12, a SpaceX Falcon 9 rocket deployed 72 small satellites for customers — including the world’s first space factory.
The challenge: In 2019, pharma giant Merck revealed that an experiment on the International Space Station had shown how to make its blockbuster cancer drug Keytruda more stable. That meant it could now be administered via a shot rather than through an IV infusion.
The key to the discovery was the fact that particles behave differently when freed from the force of gravity — seeing how its drug crystalized in microgravity helped Merck figure out how to tweak its manufacturing process on Earth to produce the more stable version.
Microgravity research could potentially lead to many more discoveries like this one, or even the development of brand-new drugs, but ISS astronauts only have so much time for commercial experiments.
“There are many high-performance products that are only possible to make in zero-gravity, which is a manufacturing capability that cannot be replicated in any factory on Earth.”-- Will Bruey.
The only options for accessing microgravity (or free fall) outside of orbit, meanwhile, are parabolic airplane flights and drop towers, and those are only useful for experiments that require less than a minute in microgravity — Merck’s ISS experiment took 18 days.
The idea: In 2021, California startup Varda Space Industries announced its intention to build the world’s first space factory, to manufacture not only pharmaceuticals but other products that could benefit from being made in microgravity, such as semiconductors and fiber optic cables.
This factory would consist of a commercial satellite platform attached to two Varda-made modules. One module would contain equipment capable of autonomously manufacturing a product. The other would be a reentry capsule to bring the finished goods back to Earth.
“There are many high-performance products that are only possible to make in zero-gravity, which is a manufacturing capability that cannot be replicated in any factory on Earth,” said CEO Will Bruey, who’d previously developed and flown spacecraft for SpaceX.
“We have a team stacked with aerospace talent in the prime of their careers, focused on getting working hardware to orbit as quickly as possible,” he continued.
“[Pharmaceuticals] are the most valuable chemicals per unit mass. And they also have a large market on Earth.” -- Will Bruey, CEO of Varda Space.
What’s new? At the time, Varda said it planned to launch its first space factory in 2023, and, in what feels like a first for a space startup, it has actually hit that ambitious launch schedule.
“We have ACQUISITION OF SIGNAL,” the startup tweeted soon after the Falcon 9 launch on June 12. “The world’s first space factory’s solar panels have found the sun and it’s beginning to de-tumble.”
During the satellite’s first week in space, Varda will focus on testing its systems to make sure everything works as hoped. The second week will be dedicated to heating and cooling the old HIV-AIDS drug ritonavir repeatedly to study how its particles crystalize in microgravity.
After about a month in space, Varda will attempt to bring its first space factory back to Earth, sending it through the atmosphere at hypersonic speeds and then using a parachute system to safely land at the Department of Defense’s Utah Test and Training Range.
Looking ahead: Ultimately, Varda’s space factories could end up serving dual purposes as manufacturing facilities and hypersonic testbeds — the Air Force has already awarded the startup a contract to use its next reentry capsule to test hardware for hypersonic missiles.
But as for manufacturing other types of goods, Varda plans to stick with drugs for now.
“[Pharmaceuticals] are the most valuable chemicals per unit mass,” Bruey told CNN. “And they also have a large market on Earth.”
“You’re not going to see Varda do anything other than pharmaceuticals for the next minimum of six, seven years,” added Delian Asparouhov, Varda’s co-founder and president.
Genes that protect health with Dr. Nir Barzilai
In today’s podcast episode, I talk with Nir Barzilai, a geroscientist, which means he studies the biology of aging. Barzilai directs the Institute for Aging Research at the Albert Einstein College of Medicine.
My first question for Dr. Barzilai was: why do we age? And is there anything to be done about it? His answers were encouraging. We can’t live forever, but we have some control over the process, as he argues in his book, Age Later.
Dr. Barzilai told me that centenarians differ from the rest of us because they have unique gene mutations that help them stay healthy longer. For most of us, the words “gene mutations” spell trouble - we associate these words with cancer or neurodegenerative diseases, but apparently not all mutations are bad.
Listen on Apple | Listen on Spotify | Listen on Stitcher | Listen on Amazon | Listen on Google
Centenarians may have essentially won the genetic lottery, but that doesn’t mean the rest of us are predestined to have a specific lifespan and health span, or the amount of time spent living productively and enjoyably. “Aging is a mother of all diseases,” Dr. Barzilai told me. And as a disease, it can be targeted by therapeutics. Dr. Barzilai’s team is already running clinical trials on such therapeutics — and the results are promising.
More about Dr. Barzilai: He is scientific director of AFAR, American Federation for Aging Research. As part of his work, Dr. Barzilai studies families of centenarians and their genetics to learn how the rest of us can learn and benefit from their super-aging. He also organizing a clinical trial to test a specific drug that may slow aging.
Show Links
Age Later: Health Span, Life Span, and the New Science of Longevity https://www.amazon.com/Age-Later-Healthiest-Sharpest-Centenarians/dp/1250230853
American Federation for Aging Research https://www.afar.org
https://www.afar.org/nir-barzilai
https://www.einsteinmed.edu/faculty/484/nir-barzilai/
Metformin as a Tool to Target Aging
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5943638/
Benefits of Metformin in Attenuating the Hallmarks of Aging https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7347426/
The Longevity Genes Project https://www.einsteinmed.edu/centers/aging/longevity-genes-project/
Lina Zeldovich has written about science, medicine and technology for Popular Science, Smithsonian, National Geographic, Scientific American, Reader’s Digest, the New York Times and other major national and international publications. A Columbia J-School alumna, she has won several awards for her stories, including the ASJA Crisis Coverage Award for Covid reporting, and has been a contributing editor at Nautilus Magazine. In 2021, Zeldovich released her first book, The Other Dark Matter, published by the University of Chicago Press, about the science and business of turning waste into wealth and health. You can find her on http://linazeldovich.com/ and @linazeldovich.