To Speed Treatments, Non-Traditional Partnerships May Be the Future
Drug development becomes even more complex as time passes. Increased regulation, new scientific methods, coupling of drugs with biomarkers, and an attempt to build drugs for much more specific populations – even individuals – all make clinical development more expensive and time-consuming. But the pressure is also constantly increasing to develop new, innovative medicines faster. So companies invest more dollars, with steadily decreasing yields in terms of such drugs on the market.
"Collaborations are in many cases the only possible solution--a powerful force driving old and new models."
The traditional models for clinical development are thus not producing the best results. Can collaboration between companies, academic institutions, and public (government and non-profit) organizations help solve the problem?
Collaboration has in fact yielded important developments in diagnostic and therapeutic products. However, truly collaborative efforts are in the minority. Particularly for biotech, diagnostic, device and pharmaceutical companies with stock traded on the public markets, or with funding from venture capital, private equity, or other investment-oriented platforms, there are strong drivers for limiting collaboration.
Particularly onerous are intellectual property (IP) concerns. Patent attorneys are normally terrified of collaborations, where the ownership of IP may be explicitly or implicitly impaired. Investment banks and fund managers are very nervous about modeling financial returns on new products where IP is shared. Development companies often have overt or implied policies greatly favoring internal development over collaboration. It could be argued that the greatest motivation behind the huge product in-licensing game is the desire to fully own product rights rather than to continue collaborations where the rights are not exclusive.
Bu the good news is that long-standing models and newer innovations in collaboration do work. Some examples are worth exploring. A huge influence currently on collaboration models across the spectrum is the revolution in immuno-oncology. More cash has gone into the development of drugs which enlist the immune system to attack cancer than any other field of drug development in history, some estimate by a factor of three. The great majority of current human clinical trials in the U.S. are in this field. There are over 200 separate drugs in development that attack a single target, PD-1--completely unprecedented. Due to the vast complexity of the human immune system, and also to the great promise that these drugs have shown in previously intractable cancers, the field has recognized that these drugs can only perform to full potential when used in combination. But the rationale for combinations is very obtuse, there are huge numbers of new drug targets and candidates, and there are many hundreds of institutions and companies involved in development of these combinations. Thus, collaborations are in many cases the only possible solution--a powerful force driving old and new models.
"As drugs have become more expensive, a huge drive has emerged, spurred by the brokers of health care, to limit the populations eligible to be prescribed an expensive new drug."
As marketing and reimbursement become increasingly complex, large commercial companies share the marketing of more products. Almost every large pharmaceutical and biotech company has products which are jointly sold with others.
Some pharmaceutical companies do a creditable job, often driven by ethical rather than economic concerns, of identifying drugs in their commercial or development portfolios which would be best in the hands of others, or which should be combined with products owned by others to achieve maximum patient benefit. Pfizer, for example, has a strong internal culture of not allowing products to become "dormant" in its hands, and actively seeks to collaboratively develop or license out such products.
Particularly in the immuno-oncology field, given the lack of firm knowledge about which combinations will work best in patients, both large and small companies are collaborating on both preclinical and clinical development. Merck, with its drug Keytruda, the leading anti-PD-1, has almost 1000 collaborative trials in progress. In most cases, the IP rights to a successful combination are not specified up-front; the desire is to see what works and deal with the rights and financial issues later.
Other companies have specifically engaged non-profit foundations and/or public bodies in collaborative efforts. This is of course not new--there is a very long history of pharmaceutical, diagnostic, and device companies either collaborating with the NIH or disease-focused foundations for development of products born from institutional research. The reverse is also true--both the NIH and foundations are often engaged to collaborate on development of products owned by industry. Sometimes these collaborations can be relatively complex. For example, Astra-Zeneca, Sloan Kettering, the Cancer Research Institute, and the National Cancer institute have engaged in a partnership to conduct clinical trials on combination cancer therapies involving the portfolio owned by Astra-Zeneca in combination with drugs owned by others, with device therapies and procedures, and with diagnostic products.
As drugs have become more expensive, a huge drive has emerged, spurred by the brokers of health care--the so-called 'insurance' companies and pharmaceutical benefit managers--to limit the populations eligible to be prescribed an expensive new drug. Thus, the field of "companion diagnostics" has crystallized. In a number of fields, including cardiology, urology, neurodegenerative disease, and oncology, developers of diagnostics and drugs seek each other out to jointly develop drug/diagnostic pairs which appropriately select patients for treatment. The number of such collaborations is escalating dramatically, although many large pharmaceutical companies have their own in-house programs.
"The lack of clinical trial data sharing has engendered some notable collaborative efforts."
But most large pharmaceutical companies are not in the business of selling diagnostic products, even if those products are so closely linked to a specific drug that they are included in the FDA-approved 'label' of that drug. As a result, some very collaborative relationships are emerging. Merck, which has a very large and active companion diagnostics development group, almost always seeks development and commercialization partners for internally innovated diagnostics – to the extent that the company actually gives away the rights and the commercial benefits of the diagnostic product. Such was the case with the Merck-developed Tau imaging agents related to Alzheimer's disease, which Merck made available without license to the entire industry. The company continues to drive such non-financial collaborations in other clinical disciplines.
Collaborations certainly take place between academic centers, but in comparison to others, they are few and of far less productive outcome. Many appear to be innovative and have great potential, but the results are often different. The collaboration between medical schools and research institutions in Northeast Ohio seems promising, but it is in large part just a means for gathering hard-to-find clinical trial patients into the giant local institutions, Case Western and the Cleveland Clinic. And the actual output of academic versus commercial development programs is usually poor. One new company recently did an exhaustive search for new clinical drug development candidates in a specific therapeutic area in academia and came up empty-handed, only to find a solid handful of candidate drugs "hiding" in pharmaceutical companies that they were willing to provide collaboratively or to license.
The lack of clinical trial data sharing has engendered some notable collaborative efforts. The Parker Institute for Cancer Immunotherapy initially set out to promulgate standards for clinical trial data collection to make trial results in the thousands of combination trials more comparable. However, after some initial frustration, they are now working collaboratively with biotech companies, academia, and pharmaceutical companies to drive forward specific combination trials that experts believe should be done.
Foundations and public organizations also enable or initiate collaborative research. The Prostate Cancer Foundation has aggressively put academic and hospital-based research institutions together with industry to push the development of new effective therapies and diagnostics for prostate cancer, with remarkable success. The Veterans Administration has recently embarked on an aggressive program of collaborations with industry (with the help of funding from the Prostate Cancer Foundation) to allow use of the VA population and the very complete patient records to start clinical trials and other development efforts that would otherwise be very difficult.
"The near future will bring some surprising collaborative successes in the development of new drugs, devices, and diagnostics, but of course, some serious disappointments as well."
Finally, the financial industry at times facilitates collaborations, although they are usually narrow. Fund managers often get two or more of their portfolio companies to pool assets and/or IP to push forward more rapid development, or to provide structure for developments that otherwise could not go forward due to size or other resource limitations. For example, Orbimed, a health-care-focused investment firm, consistently drives cross-company development efforts within its large portfolio of drug and device companies.
So collaborative efforts are very much alive and well, which is great news for patients. Current realities in science, politics, reimbursement, and finance are driving diversity in collaborative arrangements. The near future will bring some surprising collaborative successes in the development of new drugs, devices, and diagnostics, but of course, some serious disappointments as well. And the very negative influence of the IP profession on collaborations will not be soon defeated.
How sharing, hearing, and remembering positive stories can help shape our brains for the better
Across cultures and through millennia, human beings have always told stories. Whether it’s a group of boy scouts around a campfire sharing ghost stories or the paleolithic Cro-Magnons etching pictures of bison on cave walls, researchers believe that storytelling has been universal to human beings since the development of language.
But storytelling was more than just a way for our ancestors to pass the time. Researchers believe that storytelling served an important evolutionary purpose, helping humans learn empathy, share important information (such as where predators were or what berries were safe to eat), as well as strengthen social bonds. Quite literally, storytelling has made it possible for the human race to survive.
Today, neuroscientists are discovering that storytelling is just as important now as it was millions of years ago. Particularly in sharing positive stories, humans can more easily form relational bonds, develop a more flexible perspective, and actually grow new brain circuitry that helps us survive. Here’s how.
How sharing stories positively impacts the brain
When human beings share stories, it increases the levels of certain neurochemicals in the brain, neuroscientists have found. In a 2021 study published in Proceedings of the National Academy of Sciences (PNAS), Swedish researchers found that simply hearing a story could make hospitalized children feel better, compared to other hospitalized children who played a riddle game for the same amount of time. In their research, children in the intensive care unit who heard stories for just 30 minutes had higher levels of oxytocin, a hormone that promotes positive feelings and is linked to relaxation, trust, social connectedness, and overall psychological stability. Furthermore, the same children showed lower levels of cortisol, a hormone associated with stress. Afterward, the group of children who heard stories tended to describe their hospital experiences more positively, and even reported lower levels of pain.
Annie Brewster, MD, knows the positive effect of storytelling from personal experience. An assistant professor at Harvard Medical School and the author of The Healing Power of Storytelling: Using Personal Narrative to Navigate Illness, Trauma, and Loss, Brewster started sharing her personal experience with chronic illness after being diagnosed with multiple sclerosis in 2001. In doing so, Brewster says it has enabled her to accept her diagnosis and integrate it into her identity. Brewster believes so much in the power of hearing and sharing stories that in 2013 she founded Health Story Collaborative, a forum for others to share their mental and physical health challenges.“I wanted to hear stories of people who had found ways to move forward in positive ways, in spite of health challenges,” Brewster said. In doing so, Brewster believes people with chronic conditions can “move closer to self-acceptance and self-love.”
While hearing and sharing positive stories has been shown to increase oxytocin and other “feel good” chemicals, simply remembering a positive story has an effect on our brains as well. Mark Hoelterhoff, PhD, a lecturer in clinical psychology at the University of Edinburgh, recalling and “savoring” a positive story, thought, or feedback “begins to create new brain circuitry—a new neural network that’s geared toward looking for the positive,” he says. Over time, other research shows, savoring positive stories or thoughts can literally change the shape of your brain, hard-wiring someone to see things in a more positive light.How stories can change your behavior
In 2009, Paul Zak, PhD, a neuroscientist and professor at Claremont Graduate University, set out to measure how storytelling can actually change human behavior for the better. In his study, Zak wanted to measure the behavioral effects of oxytocin, and did this by showing test subjects two short video clips designed to elicit an emotional response.
In the first video they showed the study participants, a father spoke to the camera about his two-year-old son, Ben, who had been diagnosed with terminal brain cancer. The father told the audience that he struggled to connect with and enjoy Ben, as Ben had only a few months left to live. In the end, the father finds the strength to stay emotionally connected to his son until he dies.
The second video clip, however, was much less emotional. In that clip, the same father and son are shown spending the day at the zoo. Ben is only suggested to have cancer (he is bald from chemotherapy and referred to as a ‘miracle’, but the cancer isn’t mentioned directly). The second story lacked the dramatic narrative arc of the first video.
Zak’s team took blood before and after the participants watched one of the two videos and found that the first story increased the viewers’ cortisol and oxytocin, suggesting that they felt distress over the boy’s diagnosis and empathy toward the boy and his father. The second narrative, however, didn’t increase oxytocin or cortisol at all.
But Zak took the experiment a step further. After the movie clips, his team gave the study participants a chance to share money with a stranger in the lab. The participants who had an increase in cortisol and oxytocin were more likely to donate money generously. The participants who had increased cortisol and oxytocin were also more likely to donate money to a charity that works with children who are ill. Zak also found that the amount of oxytocin that was released was correlated with how much money people felt comfortable giving—in other words, the more oxytocin that was released, the more generous they felt, and the more money they donated.
How storytelling strengthens our bond with others
Sharing, hearing, and remembering stories can be a powerful tool for social change–not only in the way it changes our brain and our behavior, but also because it can positively affect our relationships with other people
Emotional stimulation from telling stories, writes Zak, is the foundation for empathy, and empathy strengthens our relationships with other people. “By knowing someone’s story—where they come from, what they do, and who you might know in common—relationships with strangers are formed.”
But why are these relationships important for humanity? Because human beings can use storytelling to build empathy and form relationships, it enables them to “engage in the kinds of large-scale cooperation that builds massive bridges and sends humans into space,” says Zak.
Storytelling, Zak found, and the oxytocin release that follows, also makes people more sensitive to social cues. This sensitivity not only motivates us to form relationships, but also to engage with other people and offer help, particularly if the other person seems to need help.
But as Zak found in his experiments, the type of storytelling matters when it comes to affecting relationships. Where Zak found that storytelling with a dramatic arc helps release oxytocin and cortisol, enabling people to feel more empathic and generous, other researchers have found that sharing happy stories allows for greater closeness between individuals and speakers. A group of Chinese researchers found that, compared to emotionally-neutral stories, happy stories were more “emotionally contagious.” Test subjects who heard happy stories had greater activation in certain areas of their brains, experienced more significant, positive changes in their mood, and felt a greater sense of closeness between themselves and the speaker.
“This finding suggests that when individuals are happy, they become less self-focused and then feel more intimate with others,” the authors of the study wrote. “Therefore, sharing happiness could strengthen interpersonal bonding.” The researchers went on to say that this could lead to developing better social networks, receiving more social support, and leading more successful social lives.
Since the start of the COVID pandemic, social isolation, loneliness, and resulting mental health issues have only gotten worse. In light of this, it’s safe to say that hearing, sharing, and remembering stories isn’t just something we can do for entertainment. Storytelling has always been central to the human experience, and now more than ever it’s become something crucial for our survival.
Want to know how you can reap the benefits of hearing happy stories? Keep an eye out for Upworthy’s first book, GOOD PEOPLE: Stories from the Best of Humanity, published by National Geographic/Disney, available on September 3, 2024. GOOD PEOPLE is a much-needed trove of life-affirming stories told straight from the heart. Handpicked from Upworthy’s community, these 101 stories speak to the breadth, depth, and beauty of the human experience, reminding us we have a lot more in common than we realize.
A new type of cancer therapy is shrinking deadly brain tumors with just one treatment
Few cancers are deadlier than glioblastomas—aggressive and lethal tumors that originate in the brain or spinal cord. Five years after diagnosis, less than five percent of glioblastoma patients are still alive—and more often, glioblastoma patients live just 14 months on average after receiving a diagnosis.
But an ongoing clinical trial at Mass General Cancer Center is giving new hope to glioblastoma patients and their families. The trial, called INCIPIENT, is meant to evaluate the effects of a special type of immune cell, called CAR-T cells, on patients with recurrent glioblastoma.
How CAR-T cell therapy works
CAR-T cell therapy is a type of cancer treatment called immunotherapy, where doctors modify a patient’s own immune system specifically to find and destroy cancer cells. In CAR-T cell therapy, doctors extract the patient’s T-cells, which are immune system cells that help fight off disease—particularly cancer. These T-cells are harvested from the patient and then genetically modified in a lab to produce proteins on their surface called chimeric antigen receptors (thus becoming CAR-T cells), which makes them able to bind to a specific protein on the patient’s cancer cells. Once modified, these CAR-T cells are grown in the lab for several weeks so that they can multiply into an army of millions. When enough cells have been grown, these super-charged T-cells are infused back into the patient where they can then seek out cancer cells, bind to them, and destroy them. CAR-T cell therapies have been approved by the US Food and Drug Administration (FDA) to treat certain types of lymphomas and leukemias, as well as multiple myeloma, but haven’t been approved to treat glioblastomas—yet.
CAR-T cell therapies don’t always work against solid tumors, such as glioblastomas. Because solid tumors contain different kinds of cancer cells, some cells can evade the immune system’s detection even after CAR-T cell therapy, according to a press release from Massachusetts General Hospital. For the INCIPIENT trial, researchers modified the CAR-T cells even further in hopes of making them more effective against solid tumors. These second-generation CAR-T cells (called CARv3-TEAM-E T cells) contain special antibodies that attack EFGR, a protein expressed in the majority of glioblastoma tumors. Unlike other CAR-T cell therapies, these particular CAR-T cells were designed to be directly injected into the patient’s brain.
The INCIPIENT trial results
The INCIPIENT trial involved three patients who were enrolled in the study between March and July 2023. All three patients—a 72-year-old man, a 74-year-old man, and a 57-year-old woman—were treated with chemo and radiation and enrolled in the trial with CAR-T cells after their glioblastoma tumors came back.
The results, which were published earlier this year in the New England Journal of Medicine (NEJM), were called “rapid” and “dramatic” by doctors involved in the trial. After just a single infusion of the CAR-T cells, each patient experienced a significant reduction in their tumor sizes. Just two days after receiving the infusion, the glioblastoma tumor of the 72-year-old man decreased by nearly twenty percent. Just two months later the tumor had shrunk by an astonishing 60 percent, and the change was maintained for more than six months. The most dramatic result was in the 57-year-old female patient, whose tumor shrank nearly completely after just one infusion of the CAR-T cells.
The results of the INCIPIENT trial were unexpected and astonishing—but unfortunately, they were also temporary. For all three patients, the tumors eventually began to grow back regardless of the CAR-T cell infusions. According to the press release from MGH, the medical team is now considering treating each patient with multiple infusions or prefacing each treatment with chemotherapy to prolong the response.
While there is still “more to do,” says co-author of the study neuro-oncologist Dr. Elizabeth Gerstner, the results are still promising. If nothing else, these second-generation CAR-T cell infusions may someday be able to give patients more time than traditional treatments would allow.
“These results are exciting but they are also just the beginning,” says Dr. Marcela Maus, a doctor and professor of medicine at Mass General who was involved in the clinical trial. “They tell us that we are on the right track in pursuing a therapy that has the potential to change the outlook for this intractable disease.”