Trading syphilis for malaria: How doctors treated one deadly disease by infecting patients with another
If you had lived one hundred years ago, syphilis – a bacterial infection spread by sexual contact – would likely have been one of your worst nightmares. Even though syphilis still exists, it can now be detected early and cured quickly with a course of antibiotics. Back then, however, before antibiotics and without an easy way to detect the disease, syphilis was very often a death sentence.
To understand how feared syphilis once was, it’s important to understand exactly what it does if it’s allowed to progress: the infections start off as small, painless sores or even a single sore near the vagina, penis, anus, or mouth. The sores disappear around three to six weeks after the initial infection – but untreated, syphilis moves into a secondary stage, often presenting as a mild rash in various areas of the body (such as the palms of a person’s hands) or through other minor symptoms. The disease progresses from there, often quietly and without noticeable symptoms, sometimes for decades before it reaches its final stages, where it can cause blindness, organ damage, and even dementia. Research indicates, in fact, that as much as 10 percent of psychiatric admissions in the early 20th century were due to dementia caused by syphilis, also known as neurosyphilis.
Like any bacterial disease, syphilis can affect kids, too. Though it’s spread primarily through sexual contact, it can also be transmitted from mother to child during birth, causing lifelong disability.
The poet-physician Aldabert Bettman, who wrote fictionalized poems based on his experiences as a doctor in the 1930s, described the effect syphilis could have on an infant in his poem Daniel Healy:
I always got away clean
when I went out
With the boys.
The night before
I was married
I went out,—But was not so fortunate;
And I infected
My bride.
When little Daniel
Was born
His eyes discharged;
And I dared not tell
That because
I had seen too much
Little Daniel sees not at all
Given the horrors of untreated syphilis, it’s maybe not surprising that people would go to extremes to try and treat it. One of the earliest remedies for syphilis, dating back to 15th century Naples, was using mercury – either rubbing it on the skin where blisters appeared, or breathing it in as a vapor. (Not surprisingly, many people who underwent this type of “treatment” died of mercury poisoning.)
Other primitive treatments included using tinctures made of a flowering plant called guaiacum, as well as inducing “sweat baths” to eliminate the syphilitic toxins. In 1910, an arsenic-based drug called Salvarsan hit the market and was hailed as a “magic bullet” for its ability to target and destroy the syphilis-causing bacteria without harming the patient. However, while Salvarsan was effective in treating early-stage syphilis, it was largely ineffective by the time the infection progressed beyond the second stage. Tens of thousands of people each year continued to die of syphilis or were otherwise shipped off to psychiatric wards due to neurosyphilis.
It was in one of these psychiatric units in the early 20th century that Dr. Julius Wagner-Juaregg got the idea for a potential cure.
Wagner-Juaregg was an Austrian-born physician trained in “experimental pathology” at the University of Vienna. Wagner-Juaregg started his medical career conducting lab experiments on animals and then moved on to work at different psychiatric clinics in Vienna, despite having no training in psychiatry or neurology.
Wagner-Juaregg’s work was controversial to say the least. At the time, medicine – particularly psychiatric medicine – did not have anywhere near the same rigorous ethical standards that doctors, researchers, and other scientists are bound to today. Wagner-Juaregg would devise wild theories about the cause of their psychiatric ailments and then perform experimental procedures in an attempt to cure them. (As just one example, Wagner-Juaregg would sterilize his adolescent male patients, thinking “excessive masturbation” was the cause of their schizophrenia.)
But sometimes these wild theories paid off. In 1883, during his residency, Wagner-Juaregg noted that a female patient with mental illness who had contracted a skin infection and suffered a high fever experienced a sudden (and seemingly miraculous) remission from her psychosis symptoms after the fever had cleared. Wagner-Juaregg theorized that inducing a high fever in his patients with neurosyphilis could help them recover as well.
Eventually, Wagner-Juaregg was able to put his theory to the test. Around 1890, Wagner-Juaregg got his hands on something called tuberculin, a therapeutic treatment created by the German microbiologist Robert Koch in order to cure tuberculosis. Tuberculin would later turn out to be completely ineffective for treating tuberculosis, often creating severe immune responses in patients – but for a short time, Wagner-Juaregg had some success in using tuberculin to help his dementia patients. Giving his patients tuberculin resulted in a high fever – and after completing the treatment, Wagner-Jauregg reported that his patient’s dementia was completely halted. The success was short-lived, however: Wagner-Juaregg eventually had to discontinue tuberculin as a treatment, as it began to be considered too toxic.
By 1917, Wagner-Juaregg’s theory about syphilis and fevers was becoming more credible – and one day a new opportunity presented itself when a wounded soldier, stricken with malaria and a related fever, was accidentally admitted to his psychiatric unit.
When his findings were published in 1918, Wagner-Juaregg’s so-called “fever therapy” swept the globe.
What Wagner-Juaregg did next was ethically deplorable by any standard: Before he allowed the soldier any quinine (the standard treatment for malaria at the time), Wagner-Juaregg took a small sample of the soldier’s blood and inoculated three syphilis patients with the sample, rubbing the blood on their open syphilitic blisters.
It’s unclear how well the malaria treatment worked for those three specific patients – but Wagner-Juaregg’s records show that in the span of one year, he inoculated a total of nine patients with malaria, for the sole purpose of inducing fevers, and six of them made a full recovery. Wagner-Juaregg’s treatment was so successful, in fact, that one of his inoculated patients, an actor who was unable to work due to his dementia, was eventually able to find work again and return to the stage. Two additional patients – a military officer and a clerk – recovered from their once-terminal illnesses and returned to their former careers as well.
When his findings were published in 1918, Wagner-Juaregg’s so-called “fever therapy” swept the globe. The treatment was hailed as a breakthrough – but it still had risks. Malaria itself had a mortality rate of about 15 percent at the time. Many people considered that to be a gamble worth taking, compared to dying a painful, protracted death from syphilis.
Malaria could also be effectively treated much of the time with quinine, whereas other fever-causing illnesses were not so easily treated. Triggering a fever by way of malaria specifically, therefore, became the standard of care.
Tens of thousands of people with syphilitic dementia would go on to be treated with fever therapy until the early 1940s, when a combination of Salvarsan and penicillin caused syphilis infections to decline. Eventually, neurosyphilis became rare, and then nearly unheard of.
Despite his contributions to medicine, it’s important to note that Wagner-Juaregg was most definitely not a person to idolize. In fact, he was an outspoken anti-Semite and proponent of eugenics, arguing that Jews were more prone to mental illness and that people who were mentally ill should be forcibly sterilized. (Wagner-Juaregg later became a Nazi sympathizer during Hitler’s rise to power even though, bizarrely, his first wife was Jewish.) Another problematic issue was that his fever therapy involved experimental treatments on many who, due to their cognitive issues, could not give informed consent.
Lack of consent was also a fundamental problem with the syphilis study at Tuskegee, appalling research that began just 14 years after Wagner-Juaregg published his “fever therapy” findings.
Still, despite his outrageous views, Wagner-Juaregg was awarded the Nobel Prize in Medicine or Physiology in 1927 – and despite some egregious human rights abuses, the miraculous “fever therapy” was partly responsible for taming one of the deadliest plagues in human history.
Deaf Scientists Just Created Over 1000 New Signs to Dramatically Improve Ability to Communicate
For the deaf, talent and hard work may not be enough to succeed in the sciences. According to the National Science Foundation, deaf Americans are vastly underrepresented in the STEM fields, a discrepancy that has profound economic implications.
The problem with STEM careers for the deaf and hard-of-hearing is that there are not enough ASL signs available.
Deaf and hard-of-hearing professionals in the sciences earn 31 percent more than those employed in other careers, according to a 2010 study by the National Technical Institute for the Deaf (NTID) in Rochester, N.Y., the largest technical college for deaf and hard-of-hearing students. But at the same time, in 2017, U.S. students with hearing disabilities earned only 1.1 percent of the 39,435 doctoral degrees awarded in science and engineering.
One reason so few deaf students gravitate to science careers and may struggle to complete doctoral programs is the communication chasm between deaf and hard-of-hearing scientists and their hearing colleagues.
Lorne Farovitch is a doctoral candidate in biomedical science at the University of Rochester of New York. Born deaf and raised by two deaf parents, he communicated solely in American Sign Language (ASL) until reaching graduate school. There, he became frustrated at the large chunk of his workdays spent communicating with hearing lab mates and professors, time he would have preferred spending on his scientific work.
The problem with STEM careers for the deaf and hard-of-hearing is that there are not enough ASL signs available, says Farovitch. Names, words, or phrases that don't exist in ASL must be finger spelled — the signer must form a distinct hand shape to correspond with each letter of the English alphabet, a tedious and time-consuming process. For instance, it requires 12 hand motions to spell out the word M-I-T-O-C-H-O-N-D-R-I-A. Imagine repeating those motions countless times a day.
To bust through this linguistic quagmire, Farovitch, along with a team of deaf STEM professionals, linguists, and interpreters, have been cooking up signs for terms like Anaplasma phagocytophilum, the tick-borne bacterium Farovitch studies. The sign creators are then videotaped performing the new signs. Those videos are posted on two crowd-sourcing sites, ASLcore.org and ASL Clear.
The beauty of ASL is you can express an entire concept in a single sign, rather than by the name of a word.
"If others don't pick it up and use it, a sign goes extinct," says Farovitch. Thus far, more than 1,000 STEM terms have been developed on ASL Clear and 500 vetted and approved by the deaf STEM community, according to Jeanne Reis, project director of the ASL Clear Project, based at The Learning Center for the Deaf in Framingham, Mass.
The beauty of ASL is you can express an entire concept in a single sign, rather than by the name of a word. The signs are generally intuitive and wonderfully creative. To express "DNA" Farovitch uses two fingers of each hand touching the tips of the opposite hand; then he draws both the hands away to suggest the double helix form of the hereditary material present in most organisms.
"If you can show it, you can understand the concept better,'' says the Canadian-born scientist. "I feel I can explain science better now."
The hope is that as ASL science vocabulary expands more, deaf and hard-of-hearing students will be encouraged to pursue the STEM fields. "ASL is not just a tool; it's a language. It's a vital part of our lives," Farovitch explains through his interpreter.
The deaf community is diverse—within and beyond the sciences. Sarah Latchney, PhD, an environmental toxicologist, is among the approximately 90 percent of deaf people born to hearing parents. Hers made sure she learned ASL at an early age but they also sent Latchney to a speech therapist to learn to speak and read lips. Latchney is so adept at both that she can communicate one-on-one with a hearing person without an interpreter.
Like Favoritch, Latchney has developed "conceptually accurate" ASL signs but she has no plans to post them on the crowd-sourcing sites. "I don't want to fix [my signs]; it works for me," she explains.
Young scientists like Farovitch and Latchney stress the need for interpreters who are knowledgeable about science. "When I give a presentation I'm a nervous wreck that I'll have an interpreter who may not have a science background," Latchney explains. "Many times what I've [signed] has been misinterpreted; either my interpreter didn't understand the question or didn't frame it correctly."
To enlarge the pool of science-savvy interpreters, the University of Rochester will offer a new masters degree program: ASL Interpreting in Medicine and Science (AIMS), which will train interpreters who have a strong background in the biological sciences.
Since the Americans with Disabilities Act was enacted in 1990, opportunities in higher education for deaf and hard-of-hearing students have opened up in the form of federally funded financial aid and the creation of student disability services on many college campuses. Still, only 18 percent of deaf adults have graduated from college, compared to 33 percent of the general population, according to a survey by the U.S. Census Bureau in 2015.
The University of Rochester and the Rochester Institute of Technology, home to NTID, have jointly created two programs to increase the representation of deaf and hard-of-hearing professionals in the sciences. The Rochester Bridges to the Doctorate Program, which Farovitch is enrolled in, prepares deaf scholars for biomedical PhD programs. The Rochester Postdoctoral Partnership readies deaf postdoctoral scientists to successfully attain academic research and teaching careers. Both programs are funded by the National Institutes of Science. In the last five years, the University of Rochester has gone from zero deaf postdoctoral and graduate students to nine.
"Deafness is not a problem, it's just a difference."
It makes sense for these two private universities to support strong programs for the deaf: Rochester has the highest per capita population of deaf or hard-of-hearing adults younger than 65 in the nation, according to the U.S. Census. According to the U.S. Department of Education, there are about 136,000 post-secondary level students who are deaf or hard of hearing.
"Deafness is not a problem, it's just a difference," says Farovitch. "We just need a different way to communicate. It doesn't mean we require more work."
Pregnant and Breastfeeding Women Might Have a New Reason to Ditch Artificial Sweeteners
Women considering pregnancy might have another reason to drop artificial sweeteners from their diet, if a new study of mice proves to apply to humans as well. It highlights "yet another potential health impact of zero-calorie sweeteners," according to lead author Stephanie Olivier-Van Stichelen.
The discovery was serendipitous, not part of the original study.
It found that commonly used artificial sweeteners consumed by female mice transfer to pups in the womb and later through milk, harming their development. The sweeteners affected the composition of bacteria in the gut of the pups, making them more vulnerable to developing diabetes, and greatly reduced the liver's capacity to neutralize toxins.
The discovery was serendipitous, not part of the original study, says John Hanover, the senior author and a cell biologist at the NIH National Institute of Diabetes and Digestive and Kidney Diseases. The main study looked at how a high sugar diet in the mother turns genes on and off in the developing offspring.
It compared them with mothers fed a low sugar diet, replacing sugar with a mix of sucralose and acesulfame-K (AK), two non-nutrient artificial sugars that are already used extensively in our food products and thought to be safe.
While the artificial sweeteners had little effect on the mothers, the trace amounts that were transferred through the placenta and milk had a profound effect on the pups. Hanover believes the molecules are changing gene expression during a crucial, short period of development.
"Somewhat to our surprise, we saw in the pups a really dramatic change in the microbiome" of those whose mothers were fed the artificial sweeteners, Hanover told leapsmag. "It looked like the neonates were much, much more sensitive than their mothers to the sucralose and AK." The unexpected discovery led them to publish a separate paper.
"The protective microbe Akkermansia was largely missing, and we saw a pretty dramatic shift in the ratio of two bacteria that are normally associated with metabolic disease," a precursor to diabetes, he explains. Akkermansia is a bacteria that feeds on mucus in the gut and helps remodel the tissue to an adult state over the first several months of life in a mouse. A similar process takes several years in humans, as the infant is weaned off of breast milk as the primary food source.
The good news is the body seems to remove these artificial sweeteners fairly quickly, probably within a week.
Another problem the researchers saw in the animals was "a particularly striking change in the metabolism of the detoxification systems" in the liver, says Hanover. A healthy liver is dark red, but a high dose of the artificial sweeteners turned it white, "which is a sign of massive problems."
The study was conducted in mice and Hanover cautions the findings may not apply to humans. "But in general, the microbiome changes that one sees in the rodent model mimics what we see in humans...[and] the genes that are turned on in the mouse and the human are very similar."
Hanover acknowledges the quantity of artificial sweeteners used in the study is on the high end of human consumption, roughly the equivalent of 20 cans of diet soda a day. But the sweeteners are so ubiquitous in consumer products, from foods to lipstick, and often not even mentioned on the label, that it is difficult to measure just how much a person consumes every day.
The good news is the body seems to remove these artificial sweeteners fairly quickly, probably within a week. Until further studies provide a clearer picture, women who want to err on the side of caution can choose to reduce if not eliminate their exposure to artificial sweeteners during pregnancy and breastfeeding.