Tiny, tough “water bears” may help bring new vaccines and medicines to sub-Saharan Africa
Microscopic tardigrades, widely considered to be some of the toughest animals on earth, can survive for decades without oxygen or water and are thought to have lived through a crash-landing on the moon. Also known as water bears, they survive by fully dehydrating and later rehydrating themselves – a feat only a few animals can accomplish. Now scientists are harnessing tardigrades’ talents to make medicines that can be dried and stored at ambient temperatures and later rehydrated for use—instead of being kept refrigerated or frozen.
Many biologics—pharmaceutical products made by using living cells or synthesized from biological sources—require refrigeration, which isn’t always available in many remote locales or places with unreliable electricity. These products include mRNA and other vaccines, monoclonal antibodies and immuno-therapies for cancer, rheumatoid arthritis and other conditions. Cooling is also needed for medicines for blood clotting disorders like hemophilia and for trauma patients.
Formulating biologics to withstand drying and hot temperatures has been the holy grail for pharmaceutical researchers for decades. It’s a hard feat to manage. “Biologic pharmaceuticals are highly efficacious, but many are inherently unstable,” says Thomas Boothby, assistant professor of molecular biology at University of Wyoming. Therefore, during storage and shipping, they must be refrigerated at 2 to 8 degrees Celsius (35 to 46 degrees Fahrenheit). Some must be frozen, typically at -20 degrees Celsius, but sometimes as low -90 degrees Celsius as was the case with the Pfizer Covid vaccine.
For Covid, fewer than 73 percent of the global population received even one dose. The need for refrigerated or frozen handling was partially to blame.
The costly cold chain
The logistics network that ensures those temperature requirements are met from production to administration is called the cold chain. This cold chain network is often unreliable or entirely lacking in remote, rural areas in developing nations that have malfunctioning electrical grids. “Almost all routine vaccines require a cold chain,” says Christopher Fox, senior vice president of formulations at the Access to Advanced Health Institute. But when the power goes out, so does refrigeration, putting refrigerated or frozen medical products at risk. Consequently, the mRNA vaccines developed for Covid-19 and other conditions, as well as more traditional vaccines for cholera, tetanus and other diseases, often can’t be delivered to the most remote parts of the world.
To understand the scope of the challenge, consider this: In the U.S., more than 984 million doses of Covid-19 vaccine have been distributed so far. Each one needed refrigeration that, even in the U.S., proved challenging. Now extrapolate to all vaccines and the entire world. For Covid, fewer than 73 percent of the global population received even one dose. The need for refrigerated or frozen handling was partially to blame.
Globally, the cold chain packaging market is valued at over $15 billion and is expected to exceed $60 billion by 2033.
Adobe Stock
Freeze-drying, also called lyophilization, which is common for many vaccines, isn’t always an option. Many freeze-dried vaccines still need refrigeration, and even medicines approved for storage at ambient temperatures break down in the heat of sub-Saharan Africa. “Even in a freeze-dried state, biologics often will undergo partial rehydration and dehydration, which can be extremely damaging,” Boothby explains.
The cold chain is also very expensive to maintain. The global pharmaceutical cold chain packaging market is valued at more than $15 billion, and is expected to exceed $60 billion by 2033, according to a report by Future Market Insights. This cost is only expected to grow. According to the consulting company Accenture, the number of medicines that require the cold chain are expected to grow by 48 percent, compared to only 21 percent for non-cold-chain therapies.
Tardigrades to the rescue
Tardigrades are only about a millimeter long – with four legs and claws, and they lumber around like bears, thus their nickname – but could provide a big solution. “Tardigrades are unique in the animal kingdom, in that they’re able to survive a vast array of environmental insults,” says Boothby, the Wyoming professor. “They can be dried out, frozen, heated past the boiling point of water and irradiated at levels that are thousands of times more than you or I could survive.” So, his team is gradually unlocking tardigrades’ survival secrets and applying them to biologic pharmaceuticals to make them withstand both extreme heat and desiccation without losing efficacy.
Boothby’s team is focusing on blood clotting factor VIII, which, as the name implies, causes blood to clot. Currently, Boothby is concentrating on the so-called cytoplasmic abundant heat soluble (CAHS) protein family, which is found only in tardigrades, protecting them when they dry out. “We showed we can desiccate a biologic (blood clotting factor VIII, a key clotting component) in the presence of tardigrade proteins,” he says—without losing any of its effectiveness.
The researchers mixed the tardigrade protein with the blood clotting factor and then dried and rehydrated that substance six times without damaging the latter. This suggests that biologics protected with tardigrade proteins can withstand real-world fluctuations in humidity.
Furthermore, Boothby’s team found that when the blood clotting factor was dried and stabilized with tardigrade proteins, it retained its efficacy at temperatures as high as 95 degrees Celsius. That’s over 200 degrees Fahrenheit, much hotter than the 58 degrees Celsius that the World Meteorological Organization lists as the hottest recorded air temperature on earth. In contrast, without the protein, the blood clotting factor degraded significantly. The team published their findings in the journal Nature in March.
Although tardigrades rarely live more than 2.5 years, they have survived in a desiccated state for up to two decades, according to Animal Diversity Web. This suggests that tardigrades’ CAHS protein can protect biologic pharmaceuticals nearly indefinitely without refrigeration or freezing, which makes it significantly easier to deliver them in locations where refrigeration is unreliable or doesn’t exist.
The tricks of the tardigrades
Besides the CAHS proteins, tardigrades rely on a type of sugar called trehalose and some other protectants. So, rather than drying up, their cells solidify into rigid, glass-like structures. As that happens, viscosity between cells increases, thereby slowing their biological functions so much that they all but stop.
Now Boothby is combining CAHS D, one of the proteins in the CAHS family, with trehalose. He found that CAHS D and trehalose each protected proteins through repeated drying and rehydrating cycles. They also work synergistically, which means that together they might stabilize biologics under a variety of dry storage conditions.
“We’re finding the protective effect is not just additive but actually is synergistic,” he says. “We’re keen to see if something like that also holds true with different protein combinations.” If so, combinations could possibly protect against a variety of conditions.
Commercialization outlook
Before any stabilization technology for biologics can be commercialized, it first must be approved by the appropriate regulators. In the U.S., that’s the U.S. Food and Drug Administration. Developing a new formulation would require clinical testing and vast numbers of participants. So existing vaccines and biologics likely won’t be re-formulated for dry storage. “Many were developed decades ago,” says Fox. “They‘re not going to be reformulated into thermo-stable vaccines overnight,” if ever, he predicts.
Extending stability outside the cold chain, even for a few days, can have profound health, environmental and economic benefits.
Instead, this technology is most likely to be used for the new products and formulations that are just being created. New and improved vaccines will be the first to benefit. Good candidates include the plethora of mRNA vaccines, as well as biologic pharmaceuticals for neglected diseases that affect parts of the world where reliable cold chain is difficult to maintain, Boothby says. Some examples include new, more effective vaccines for malaria and for pathogenic Escherichia coli, which causes diarrhea.
Tallying up the benefits
Extending stability outside the cold chain, even for a few days, can have profound health, environmental and economic benefits. For instance, MenAfriVac, a meningitis vaccine (without tardigrade proteins) developed for sub-Saharan Africa, can be stored at up to 40 degrees Celsius for four days before administration. “If you have a few days where you don’t need to maintain the cold chain, it’s easier to transport vaccines to remote areas,” Fox says, where refrigeration does not exist or is not reliable.
Better health is an obvious benefit. MenAfriVac reduced suspected meningitis cases by 57 percent in the overall population and more than 99 percent among vaccinated individuals.
Lower healthcare costs are another benefit. One study done in Togo found that the cold chain-related costs increased the per dose vaccine price up to 11-fold. The ability to ship the vaccines using the usual cold chain, but transporting them at ambient temperatures for the final few days cut the cost in half.
There are environmental benefits, too, such as reducing fuel consumption and greenhouse gas emissions. Cold chain transports consume 20 percent more fuel than non-cold chain shipping, due to refrigeration equipment, according to the International Trade Administration.
A study by researchers at Johns Hopkins University compared the greenhouse gas emissions of the new, oral Vaxart COVID-19 vaccine (which doesn’t require refrigeration) with four intramuscular vaccines (which require refrigeration or freezing). While the Vaxart vaccine is still in clinical trials, the study found that “up to 82.25 million kilograms of CO2 could be averted by using oral vaccines in the U.S. alone.” That is akin to taking 17,700 vehicles out of service for one year.
Although tardigrades’ protective proteins won’t be a component of biologic pharmaceutics for several years, scientists are proving that this approach is viable. They are hopeful that a day will come when vaccines and biologics can be delivered anywhere in the world without needing refrigerators or freezers en route.
Kira Peikoff was the editor-in-chief of Leaps.org from 2017 to 2021. As a journalist, her work has appeared in The New York Times, Newsweek, Nautilus, Popular Mechanics, The New York Academy of Sciences, and other outlets. She is also the author of four suspense novels that explore controversial issues arising from scientific innovation: Living Proof, No Time to Die, Die Again Tomorrow, and Mother Knows Best. Peikoff holds a B.A. in Journalism from New York University and an M.S. in Bioethics from Columbia University. She lives in New Jersey with her husband and two young sons. Follow her on Twitter @KiraPeikoff.
With a deadly pandemic sweeping the planet, many are questioning the comfort and security we have taken for granted in the modern world.
A century ago, when an influenza pandemic struck, we barely knew what viruses were.
More than a century after the germ theory, we are still at the mercy of a microbe we can neither treat, nor control, nor immunize against. Even more discouraging is that technology has in some ways exacerbated the problem: cars and air travel allow a new disease to quickly encompass the globe.
Some say we have grown complacent, that we falsely assume the triumphs of the past ensure a happy and prosperous future, that we are oblivious to the possibility of unpredictable "black swan" events that could cause our destruction. Some have begun to lose confidence in progress itself, and despair of the future.
But the new coronavirus should not defeat our spirit—if anything, it should spur us to redouble our efforts, both in the science and technology of medicine, and more broadly in the advance of industry. Because the best way to protect ourselves against future disasters is more progress, faster.
Science and technology have overall made us much better able to deal with disease. In the developed world, we have already tamed most categories of infectious disease. Most bacterial infections, such as tuberculosis or bacterial pneumonia, are cured with antibiotics. Waterborne diseases such as cholera are eliminated through sanitation; insect-borne ones such as malaria through pest control. Those that are not contagious until symptoms appear, such as SARS, can be handled through case isolation and contact tracing. For the rest, such as smallpox, polio, and measles, we develop vaccines, given enough time. COVID-19 could start a pandemic only because it fits a narrow category: a new, viral disease that is highly contagious via pre-symptomatic droplet/aerosol transmission, and that has a high mortality rate compared to seasonal influenza.
A century ago, when an influenza pandemic struck, we barely knew what viruses were; no one had ever seen one. Today we know what COVID-19 is down to its exact genome; in fact, we have sequenced thousands of COVID-19 genomes, and can track its history and its spread through their mutations. We can create vaccines faster today, too: where we once developed them in live animals, we now use cell cultures; where we once had to weaken or inactivate the virus itself, we can now produce vaccines based on the virus's proteins. And even though we don't yet have a treatment, the last century-plus of pharmaceutical research has given us a vast catalog of candidate drugs, already proven safe. Even now, over 50 candidate vaccines and almost 100 candidate treatments are in the research pipeline.
It's not just our knowledge that has advanced, but our methods. When smallpox raged in the 1700s, even the idea of calculating a case-fatality rate was an innovation. When the polio vaccine was trialled in the 1950s, the use of placebo-controlled trials was still controversial. The crucial measure of contagiousness, "R0", was not developed in epidemiology until the 1980s. And today, all of these methods are made orders of magnitude faster and more powerful by statistical and data visualization software.
If you're seeking to avoid COVID-19, the hand sanitizer gel you carry in a pocket or purse did not exist until the 1960s. If you start to show symptoms, the pulse oximeter that tests your blood oxygenation was not developed until the 1970s. If your case worsens, the mechanical ventilator that keeps you alive was invented in the 1950s—in fact, no form of artificial respiration was widely available until the "iron lung" used to treat polio patients in the 1930s. Even the modern emergency medical system did not exist until recently: if during the 1918 flu pandemic you became seriously ill, there was no 911 hotline to call, and any ambulance that showed up would likely have been a modified van or hearse, with no equipment or trained staff.
As many of us "shelter in place", we are far more able to communicate and collaborate, to maintain some semblance of normal life, than we ever would have been. To compare again to 1918: long-distance telephone service barely existed at that time, and only about a third of homes in the US even had electricity; now we can videoconference over Zoom and Skype. And the enormous selection and availability provided by online retail and food delivery have kept us stocked and fed, even when we don't want to venture out to the store.
Let the virus push us to redouble our efforts to make scientific, technological, and industrial progress on all fronts.
"Black swan" calamities can strike without warning at any time. Indeed, humanity has always been subject to them—drought and frost, fire and flood, war and plague. But we are better equipped now to deal with them than ever before. And the more progress we make, the better prepared we'll be for the next one. The accumulation of knowledge, technology, industrial infrastructure, and surplus wealth is the best buffer against any shock—whether a viral pandemic, a nuclear war, or an asteroid impact. In fact, the more worried we are about future crises, the more energetically we should accelerate science, technology and industry.
In this sense, we have grown complacent. We take the modern world for granted, so much so that some question whether further progress is even still needed. The new virus proves how much we do need it, and how far we still have to go. Imagine how different things would be if we had broad-spectrum antiviral drugs, or a way to enhance the immune system to react faster to infection, or a way to detect infection even before symptoms appear. These technologies may seem to belong to a Star Trek future—but so, at one time, did cell phones.
The virus reminds us that nature is indifferent to us, leaving us to fend entirely for ourselves. As we go to war against it, let us not take the need for such a war as reason for despair. Instead, let it push us to redouble our efforts to make scientific, technological, and industrial progress on all fronts. No matter the odds, applied intelligence is our best weapon against disaster.