Tiny, tough “water bears” may help bring new vaccines and medicines to sub-Saharan Africa
Microscopic tardigrades, widely considered to be some of the toughest animals on earth, can survive for decades without oxygen or water and are thought to have lived through a crash-landing on the moon. Also known as water bears, they survive by fully dehydrating and later rehydrating themselves – a feat only a few animals can accomplish. Now scientists are harnessing tardigrades’ talents to make medicines that can be dried and stored at ambient temperatures and later rehydrated for use—instead of being kept refrigerated or frozen.
Many biologics—pharmaceutical products made by using living cells or synthesized from biological sources—require refrigeration, which isn’t always available in many remote locales or places with unreliable electricity. These products include mRNA and other vaccines, monoclonal antibodies and immuno-therapies for cancer, rheumatoid arthritis and other conditions. Cooling is also needed for medicines for blood clotting disorders like hemophilia and for trauma patients.
Formulating biologics to withstand drying and hot temperatures has been the holy grail for pharmaceutical researchers for decades. It’s a hard feat to manage. “Biologic pharmaceuticals are highly efficacious, but many are inherently unstable,” says Thomas Boothby, assistant professor of molecular biology at University of Wyoming. Therefore, during storage and shipping, they must be refrigerated at 2 to 8 degrees Celsius (35 to 46 degrees Fahrenheit). Some must be frozen, typically at -20 degrees Celsius, but sometimes as low -90 degrees Celsius as was the case with the Pfizer Covid vaccine.
For Covid, fewer than 73 percent of the global population received even one dose. The need for refrigerated or frozen handling was partially to blame.
The costly cold chain
The logistics network that ensures those temperature requirements are met from production to administration is called the cold chain. This cold chain network is often unreliable or entirely lacking in remote, rural areas in developing nations that have malfunctioning electrical grids. “Almost all routine vaccines require a cold chain,” says Christopher Fox, senior vice president of formulations at the Access to Advanced Health Institute. But when the power goes out, so does refrigeration, putting refrigerated or frozen medical products at risk. Consequently, the mRNA vaccines developed for Covid-19 and other conditions, as well as more traditional vaccines for cholera, tetanus and other diseases, often can’t be delivered to the most remote parts of the world.
To understand the scope of the challenge, consider this: In the U.S., more than 984 million doses of Covid-19 vaccine have been distributed so far. Each one needed refrigeration that, even in the U.S., proved challenging. Now extrapolate to all vaccines and the entire world. For Covid, fewer than 73 percent of the global population received even one dose. The need for refrigerated or frozen handling was partially to blame.
Globally, the cold chain packaging market is valued at over $15 billion and is expected to exceed $60 billion by 2033.
Adobe Stock
Freeze-drying, also called lyophilization, which is common for many vaccines, isn’t always an option. Many freeze-dried vaccines still need refrigeration, and even medicines approved for storage at ambient temperatures break down in the heat of sub-Saharan Africa. “Even in a freeze-dried state, biologics often will undergo partial rehydration and dehydration, which can be extremely damaging,” Boothby explains.
The cold chain is also very expensive to maintain. The global pharmaceutical cold chain packaging market is valued at more than $15 billion, and is expected to exceed $60 billion by 2033, according to a report by Future Market Insights. This cost is only expected to grow. According to the consulting company Accenture, the number of medicines that require the cold chain are expected to grow by 48 percent, compared to only 21 percent for non-cold-chain therapies.
Tardigrades to the rescue
Tardigrades are only about a millimeter long – with four legs and claws, and they lumber around like bears, thus their nickname – but could provide a big solution. “Tardigrades are unique in the animal kingdom, in that they’re able to survive a vast array of environmental insults,” says Boothby, the Wyoming professor. “They can be dried out, frozen, heated past the boiling point of water and irradiated at levels that are thousands of times more than you or I could survive.” So, his team is gradually unlocking tardigrades’ survival secrets and applying them to biologic pharmaceuticals to make them withstand both extreme heat and desiccation without losing efficacy.
Boothby’s team is focusing on blood clotting factor VIII, which, as the name implies, causes blood to clot. Currently, Boothby is concentrating on the so-called cytoplasmic abundant heat soluble (CAHS) protein family, which is found only in tardigrades, protecting them when they dry out. “We showed we can desiccate a biologic (blood clotting factor VIII, a key clotting component) in the presence of tardigrade proteins,” he says—without losing any of its effectiveness.
The researchers mixed the tardigrade protein with the blood clotting factor and then dried and rehydrated that substance six times without damaging the latter. This suggests that biologics protected with tardigrade proteins can withstand real-world fluctuations in humidity.
Furthermore, Boothby’s team found that when the blood clotting factor was dried and stabilized with tardigrade proteins, it retained its efficacy at temperatures as high as 95 degrees Celsius. That’s over 200 degrees Fahrenheit, much hotter than the 58 degrees Celsius that the World Meteorological Organization lists as the hottest recorded air temperature on earth. In contrast, without the protein, the blood clotting factor degraded significantly. The team published their findings in the journal Nature in March.
Although tardigrades rarely live more than 2.5 years, they have survived in a desiccated state for up to two decades, according to Animal Diversity Web. This suggests that tardigrades’ CAHS protein can protect biologic pharmaceuticals nearly indefinitely without refrigeration or freezing, which makes it significantly easier to deliver them in locations where refrigeration is unreliable or doesn’t exist.
The tricks of the tardigrades
Besides the CAHS proteins, tardigrades rely on a type of sugar called trehalose and some other protectants. So, rather than drying up, their cells solidify into rigid, glass-like structures. As that happens, viscosity between cells increases, thereby slowing their biological functions so much that they all but stop.
Now Boothby is combining CAHS D, one of the proteins in the CAHS family, with trehalose. He found that CAHS D and trehalose each protected proteins through repeated drying and rehydrating cycles. They also work synergistically, which means that together they might stabilize biologics under a variety of dry storage conditions.
“We’re finding the protective effect is not just additive but actually is synergistic,” he says. “We’re keen to see if something like that also holds true with different protein combinations.” If so, combinations could possibly protect against a variety of conditions.
Commercialization outlook
Before any stabilization technology for biologics can be commercialized, it first must be approved by the appropriate regulators. In the U.S., that’s the U.S. Food and Drug Administration. Developing a new formulation would require clinical testing and vast numbers of participants. So existing vaccines and biologics likely won’t be re-formulated for dry storage. “Many were developed decades ago,” says Fox. “They‘re not going to be reformulated into thermo-stable vaccines overnight,” if ever, he predicts.
Extending stability outside the cold chain, even for a few days, can have profound health, environmental and economic benefits.
Instead, this technology is most likely to be used for the new products and formulations that are just being created. New and improved vaccines will be the first to benefit. Good candidates include the plethora of mRNA vaccines, as well as biologic pharmaceuticals for neglected diseases that affect parts of the world where reliable cold chain is difficult to maintain, Boothby says. Some examples include new, more effective vaccines for malaria and for pathogenic Escherichia coli, which causes diarrhea.
Tallying up the benefits
Extending stability outside the cold chain, even for a few days, can have profound health, environmental and economic benefits. For instance, MenAfriVac, a meningitis vaccine (without tardigrade proteins) developed for sub-Saharan Africa, can be stored at up to 40 degrees Celsius for four days before administration. “If you have a few days where you don’t need to maintain the cold chain, it’s easier to transport vaccines to remote areas,” Fox says, where refrigeration does not exist or is not reliable.
Better health is an obvious benefit. MenAfriVac reduced suspected meningitis cases by 57 percent in the overall population and more than 99 percent among vaccinated individuals.
Lower healthcare costs are another benefit. One study done in Togo found that the cold chain-related costs increased the per dose vaccine price up to 11-fold. The ability to ship the vaccines using the usual cold chain, but transporting them at ambient temperatures for the final few days cut the cost in half.
There are environmental benefits, too, such as reducing fuel consumption and greenhouse gas emissions. Cold chain transports consume 20 percent more fuel than non-cold chain shipping, due to refrigeration equipment, according to the International Trade Administration.
A study by researchers at Johns Hopkins University compared the greenhouse gas emissions of the new, oral Vaxart COVID-19 vaccine (which doesn’t require refrigeration) with four intramuscular vaccines (which require refrigeration or freezing). While the Vaxart vaccine is still in clinical trials, the study found that “up to 82.25 million kilograms of CO2 could be averted by using oral vaccines in the U.S. alone.” That is akin to taking 17,700 vehicles out of service for one year.
Although tardigrades’ protective proteins won’t be a component of biologic pharmaceutics for several years, scientists are proving that this approach is viable. They are hopeful that a day will come when vaccines and biologics can be delivered anywhere in the world without needing refrigerators or freezers en route.
This Dog's Nose Is So Good at Smelling Cancer That Scientists Are Trying to Build One Just Like It
Daisy wouldn't leave Claire Guest alone. Instead of joining Guest's other dogs for a run in the park, the golden retriever with the soulful eyes kept nudging Guest's chest, and stared at her intently, somehow hoping she'd get the message.
"I was incredibly lucky to be told by Daisy."
When Guest got home, she detected a tiny lump in one of her breasts. She dismissed it, but her sister, who is a family doctor, insisted she get it checked out.
That saved her life. A series of tests, including a biopsy and a mammogram, revealed the cyst was benign. But doctors discovered a tumor hidden deep inside her chest wall, an insidious malignancy that normally isn't detected until the cancer has rampaged out of control throughout the body. "My prognosis would have been very poor," says Guest, who is an animal behavioralist. "I was incredibly lucky to be told by Daisy."
Ironically, at the time, Guest was training hearing dogs for the deaf—alerting them to doorbells or phones--for a charitable foundation. But she had been working on a side project to harness dogs' exquisitely sensitive sense of smell to spot cancer at its earliest and most treatable stages. When Guest was diagnosed with cancer two decades ago, however, the use of dogs to detect diseases was in its infancy and scientific evidence was largely anecdotal.
In the years since, Guest and the British charitable foundation she co-founded with Dr. John Church in 2008, Medical Detection Dogs (MDD), has shown that dogs can be trained to detect odors that predict a looming medical crisis hours in advance, in the case of diabetes or epilepsy, as well as the presence of cancers.
In a proof of principle study published in the BMJ in 2004, they showed dogs had better than a 40 percent success rate in identifying bladder cancer, which was significantly better than random chance (14 percent). Subsequent research indicated dogs can detect odors down to parts per trillion, which is the equivalent of sniffing out a teaspoon of sugar in two Olympic size swimming pools (a million gallons).
American scientists are devising artificial noses that mimic dogs' sense of smell, so these potentially life-saving diagnostic tools are widely available.
But the problem is "dogs can't be scaled up"—it costs upwards of $25,000 to train them—"and you can't keep a trained dog in every oncology practice," says Guest.
The good news is that the pivotal 2004 BMJ paper caught the attention of two American scientists—Andreas Mershin, a physicist at MIT, and Wen-Yee Yee, a chemistry professor at The University of Texas at El Paso. They have joined Guest's quest to leverage canines' highly attuned olfactory systems and devise artificial noses that mimic dogs' sense of smell, so these potentially life-saving diagnostic tools are widely available.
"What we do know is that this is real," says Guest. "Anything that can improve diagnosis of cancer is something we ought to know about."
Dogs have routinely been used for centuries as trackers for hunting and more recently, for ferreting out bombs and bodies. Dogs like Daisy, who went on to become a star performer in Guest's pack of highly trained cancer detecting canines before her death in 2018, have shared a special bond with their human companions for thousands of years. But their vastly superior olfaction is the result of simple anatomy.
Humans possess about six million olfactory receptors—the antenna-like structures inside cell membranes in our nose that latch on to the molecules in the air when we inhale. In contrast, dogs have about 300 million of them and the brain region that analyzes smells is, proportionally, about 40 times greater than ours.
Research indicates that cancerous cells interfere with normal metabolic processes, prompting them to produce volatile organic compounds (VOCs), which enter the blood stream and are either exhaled in our breath or excreted in urine. Dogs can identify these VOCs in urine samples at the tiniest concentrations, 0.001 parts per million, and can be trained to identify the specific "odor fingerprint" of different cancers, although teaching them how to distinguish these signals from background odors is far more complicated than training them to detect drugs or explosives.
For the past fifteen years, Andreas Mershin of MIT has been grappling with this complexity in his quest to devise an artificial nose, which he calls the Nano-Nose, first as a military tool to spot land mines and IEDS, and more recently as a cancer detection tool that can be used in doctors' offices. The ultimate goal is to create an easy-to-use olfaction system powered by artificial intelligence that can fit inside of smartphones and can replicate dogs' ability to sniff out early signs of prostate cancer, which could eliminate a lot of painful and costly biopsies.
Andreas Mershin works on his artificial nose.
Trained canines have a better than 90 percent accuracy in spotting prostate cancer, which is normally difficult to detect. The current diagnostic, the prostate specific antigen test, which measures levels of certain immune system cells associated with prostate cancer, has about as much accuracy "as a coin toss," according to the scientist who discovered PSA. These false positives can lead to unnecessary and horrifically invasive biopsies to retrieve tissue samples.
So far, Mershin's prototype device has the same sensitivity as the dogs—and can detect odors at parts per trillion—but it still can't distinguish that cancer smell in individual human patients the way a dog can. "What we're trying to understand from the dogs is how they look at the data they are collecting so we can copy it," says Mershin. "We still have to make it intelligent enough to know what it is looking at—what we are lacking is artificial dog intelligence."
The intricate parts of the artificial nose are designed to fit inside a smartphone.
At UT El Paso, Wen-Yee Lee and her research team has used the canine olfactory system as a model for a new screening test for prostate cancer, which has a 92 percent accuracy in tests of urine samples and could be eventually developed as a kit similar to the home pregnancy test. "If dogs can do it, we can do it better," says Lee, whose husband was diagnosed with prostate cancer in 2005.
The UT scientists used samples from about 150 patients, and looked at about 9,000 compounds before they were able to zero in on the key VOCs that are released by prostate cancers—"it was like finding a needle in the haystack," says Lee. But a more reliable test that can also distinguish which cancers are more aggressive could help patients decide their best treatment options and avoid invasive procedures that can render them incontinent and impotent.
"This is much more accurate than the PSA—we were able to see a very distinct difference between people with prostate cancer and those without cancer," says Lee, who has been sharing her research with Guest and hopes to have the test on the market within the next few years.
In the meantime, Guest's foundation has drawn the approving attention of royal animal lovers: Camilla, the Duchess of Cornwall, is a patron, which opened up the charitable floodgates and helped legitimize MDD in the scientific community. Even Camilla's mother-in-law, Queen Elizabeth, has had a demonstration of these canny canines' unique abilities.
Claire Guest, and two of MDDs medical detection dogs, Jodie and Nimbus, meet with queen Elizabeth.
"She actually held one of my [artificial] noses in her hand and asked really good questions, including things we hadn't thought of, like the range of how far away a dog can pick up the scent or if this can be used to screen for malaria," says Mershin. "I was floored by this curious 93-year-old lady. Half of humanity's deaths are from chronic diseases and what the dogs are showing is a whole new way of understanding holistic diseases of the system."
Move Over, Iron Man. A Real-Life Power Suit Helped This Paralyzed Grandmother Learn to Run.
Puschel Sorensen first noticed something was wrong when her fingertips began to tingle. Later that day, she grew weak and fell.
It picked up small electrical impulses on her skin's surface and turned them into full movement in her legs.
Her family rushed her to the doctor, where she received the devastating diagnosis of Guillain-Barré Syndrome -- a rare and rapidly progressing autoimmune disorder that attacks the myelin sheath covering nerves.
Sorensen, a once-spry grandmother in her late fifties, spent 54 days in intensive care in 2018. When she was finally transferred to a rehab facility near her home in Florida, she was still on a feeding tube and ventilator, and was paralyzed from the neck down. Progress with traditional physical therapy was slow.
Sorensen in the hospital after her diagnosis of Guillain-Barré syndrome.
And then everything changed. Sorensen began using a cutting-edge technology called an exoskeleton to relearn how to walk. In the vein of Iron Man's fictional power suit, it confers strength and mobility to the wearer that isn't possible otherwise. In Sorensen's case, her device, called HAL – for hybrid assistive limb -- picked up small electrical impulses on her skin's surface and turned them into full movement in her legs while she attempted to walk on a treadmill.
"It was very difficult, but super awesome," recalls Sorensen, of first using the device. "The robot was having to do all the work for me."
Amazingly, within a year, she was running. She's one of 38 patients who have used HAL to recover from accidents or medical catastrophes.
Cyberdyne's hybrid assistive limb technology.
"How do you thank someone for giving them back the ability to walk, the ability to live your life again?" Sorensen asks effusively.
It's still early days for such exoskeleton devices, which number perhaps a few thousand worldwide, according to data from the handful of manufacturers who create them with any scale. But the devices' ability to dramatically rehabilitate patients like Sorensen highlights their potential to extract untold numbers of people from wheelchairs, and even to usher in a new paradigm for caregiving – one of the fastest growing segments of the U.S. economy.
"I've been a physical therapist for 16 years, and (these devices) help teach patients the right way to move in rehabilitation," says Robert McIver, director of clinical technology at the Brooks Cybernic Treatment Center, part of the Brooks Rehabilitation Hospital in Jacksonville, Fla, where Sorensen recovered.
Another patient there, a 17-year-old named George with a snowboarding injury that paralyzed his legs, was getting around with a walker within 20 sessions.
As patients progress in their recoveries, so does exoskeleton technology. Jack Peurach, CEO of Ekso, one of the leaders in the space, believes within a decade they could resemble an article of clothing (a "magic pair of pants" is his phrase). They also may become inexpensive and reliable enough to transition from a medical to a consumer device. McIver sees them eventually being used in the home on an ongoing basis as a personal assistive device, much like a walker or cane, to prevent falls in elderly people.
Such a transition "certainly could eventually lessen the need for caregivers," says Sharona Hoffman, a professor of law at Case Western University in Cleveland who has written extensively on aging and bioethics. "We have a real shortage of caregivers, so that would be a good thing."
Of course, having an aging and disabled population using exoskeletons in much the same way as an Apple Watch raises issues of its own.
Dr. Elizabeth Landsverk, a California-based geriatrician and founder of a company that performs house calls for elderly patients, believes the tech holds some promise in easing the burden on caregivers, who sometimes have to lift or move patients without assistance. But she also believes exoskeletons could become overhyped.
"I don't see robotics as completely replacing the caregiver," she says. And even if exoskeletons became akin to articles of clothing, she is skeptical of how convenient they could become.
"It's hard enough to get into support hose. Would an older person be able to get in and out of it on their own?" she asks, noting that a patient's cognitive levels could pose a huge barrier to donning such a device without assistance.
If personal exoskeletons did wildly succeed, Hoffman wonders whether they would leave the elderly more physically mobile yet also more socially isolated, since caregivers or even residing in an assisted living facility may no longer be required. Or, if they were priced in the hundreds or thousands of dollars, he worries that the cost would exacerbate social inequalities among the elderly and disabled.
"It's almost like a bad dream that [my illness] happened."
With any technology that confers superhuman ability, there's also the question of appropriate usage. Even the fictional Power Loader in the movie Alien required an operator's license. In the real world, such an approach would likely pay dividends.
"We would have to make sure physicians are well-trained in these devices, and patients have a way of getting training to operate them that is thorough and responsible," Hoffman says.
But despite some unresolved questions, it is a remarkable achievement to be able to give people back their lives thanks to new technology.
"It's almost like a bad dream that [my illness] happened," says Sorensen, who managed to walk in her daughter's wedding after her recovery. "Because now everything is pretty much back to normal and it's awesome."