Technology’s Role in Feeding a Soaring Population Raises This Dilemma
When farmer Terry Wanzek walks out in his fields, he sometimes sees a grove of trees, which reminds him of his grandfather, who planted those trees. Or he looks out over the pond, which deer, ducks and pheasant use for water, and he knows that his grandfather made a decision to drain land and put the pond in that exact spot.
Growing more with fewer resources is becoming increasingly urgent as the Earth's population is expected to hit 9.1 billion by 2050.
"There is a connection that goes beyond running a business and making a profit," says Wanzek, a fourth-generation North Dakota farmer who raises spring wheat, corn, soybeans, barley, dry edible beans and sunflowers. "There is a connection to family, to your ancestors and there is a connection to your posterity and your kids."
Wanzek's corn and soybeans are genetically modified (GM) crops, which means that they have been altered at the DNA level to create desirable traits. This intervention, he says, allows him to start growing earlier and to produce more food per acre.
Growing more with fewer resources is becoming increasingly urgent as the Earth's population is expected to hit 9.1 billion by 2050, with nearly all of the rise coming from developing countries, according to the Food and Agriculture Organization of the United Nations. This population will be urban, which means they'll likely be eating fewer grains and other staple crops, and more vegetables, fruits, meat, dairy, and fish.
Whether those foods will be touched in some way by technology remains a high-stakes question. As for GM foods, the American public is somewhat skeptical: in a recent survey, about one-third of Americans report that they are actively avoiding GMOs or seek out non-GMO labels when shopping and purchasing foods. These consumers fear unsafe food and don't want biotechnologists to tamper with nature. This disconnect—between those who consume food and those who produce it—is only set to intensify as major agricultural companies work to develop further high-tech farming solutions to meet the needs of the growing population.
"I don't think we have a choice going forward. The world isn't getting smaller. We have to come up with a means of using less."
In the future, it may be possible to feed the world. But what if the world doesn't want the food?
A Short History
Genetically modified food is not new. The first such plant (the Flavr Savr tomato) was approved for human consumption and brought to market in 1994, but people didn't like the taste. Today, nine genetically modified food crops are commercially available in the United States (corn, soybean, squash, papaya, alfalfa, sugar beets, canola, potato and apples). Most were modified to increase resistance to disease or pests, or tolerance to a specific herbicide. Such crops have in fact been found to increase yields, with a recent study showing grain yield was up to 24.5 percent higher in genetically engineered corn.
Despite some consumer skepticism, many farmers don't have a problem with GM crops, says Jennie Schmidt, a farmer and registered dietician in Maryland. She says with a laugh that her farm is a "grocery store farm - we grow the ingredients you buy in products at the grocery store." Schmidt's father-in-law, who started the farm, watched the adoption of hybrid corn improve seeds in the 1930s and 1940s.
"It wasn't a difficult leap to see how well these hybrid corn seeds have done over the decades," she says. "So when the GMOs came out, it was a quicker adoption curve, because as farmers they had already been exposed to the first generation and this was just the next step."
Schmidt, for one, is excited about the gene-editing tool CRISPR and other ways biotechnologists can create food like apples or potatoes with a particular enzyme turned off so they don't go brown during oxidation. Other foods in the pipeline include disease-resistant citrus, low-gluten wheat, fungus-resistant bananas, and anti-browning mushrooms.
"We need to not judge our agriculture by yield per acre but nutrition per acre."
"I don't think we have a choice going forward," says Schmidt. "The world isn't getting smaller. We have to come up with a means of using less."
A Different Way Forward?
But others remain convinced that there are better ways to feed the planet. Andrew Kimball, executive director of the Center for Food Safety, a non-profit that promotes organic and sustainable agriculture, says the public has been sold a lie with biotech. "GMO technology is not proven as a food producer," he says. "It's just not being done anywhere at a large scale. Ninety-nine percent of GMOs are corn and soy, and they allow chemical companies to sell more chemicals. But that doesn't increase food or decrease hunger." Instead, Kimball advocates for a pivot from commodity agriculture to farms with crop diversity and animals.
Kimball also suggests a way to use land more appropriately: stop growing so much biofuel. Right now, in the U.S., more than 55 percent of our crop farmland is in corn and soy. About 40 percent of that goes into cars through ethanol, 40 percent is fed to animals and a good bit of the rest goes into high-fructose corn syrup. That leaves only a small amount to feed people, says Kimball. "If you want to feed the world, not just the U.S., you want to make sure to use that land to feed people," he says. "We need to not judge our agriculture by yield per acre but nutrition per acre."
Robert Streiffer, a bioethicist at the University of Wisconsin at Madison, agrees that GMOs haven't really helped alleviate hunger. Glyphosate resistance, one of the traits that is most commonly used in genetically engineered crops, doesn't improve yield or allow crops to be grown in areas where they weren't able to be grown before. "Insect resistance through the insertion of a Bt gene can improve yield, but is mostly used for cotton (which is not a food crop) and corn which goes to feed cattle, a very inefficient method of feeding the hungry, to say the least," he says. Important research is being done in crops such as cassava, which could help relieve global hunger. But in his opinion, these researchers lack the profit potential needed to motivate large private funding sources, so they require more public-sector funding.
"A substantial portion of public opposition is as much about the lack of any perceived benefits for the consumers as it is for outright fear of health or environmental dangers."
"Public opposition to biotech foods is certainly a factor, but I expect this will slowly decline as labels indicating the presence of GE (genetically engineered) ingredients become more common, and as we continue to amass reassuring data on the comparative environmental safety of GE crops," says Streiffer. "A substantial portion of public opposition is as much about the lack of any perceived benefits for the consumers as it is for outright fear of health or environmental dangers."
One sign that the public may be willing to embrace some non-natural foods is the recent interest in cultured meat, which is grown in a lab from animal cells but doesn't require raising or killing animals. A study published last year in PLOS One found that 65 percent of 673 surveyed U.S. individuals would probably or definitely try cultured meat, while only 8.5 percent said they definitely would not. In the future, lab-grown food may become another way to create more food with fewer resources.
Danielle Nierenberg, president of the Food Tank, a nonprofit organization focused on building a global community of safe and healthy food, points to an even more immediate problem: food waste. Globally, about a third of food is thrown out or goes bad before it has a chance to be eaten. She says simply fixing roads and infrastructure in developing countries would go a long way toward ensuring that food reaches the hungry. Focusing on helping small farmers (who grow 70 percent of food around the globe), especially female farmers, would go a long way, she says.
Innovation on the Farm
In addition to good roads, those farmers need fertilizer. Nitrogen-based fertilizers may get a boost in the future from technologies that release nutrients slowly over time, like slow-release medicines based on nanotechnology. In field trials on rice in Sri Lanka, one such nanotech fertilizer increased crop yields by 10 percent, even though it delivered only half the amount of urea compared with traditional fertilizer, according to a study last year.
"I'm not afraid of the food I grow. We live in the same environment, and I feel completely safe."
One startup, the San-Francisco-based Biome Makers, is profiling microbial DNA to give farmers an idea of what their soil needs to better support crops. Joyn Bio, another new startup based in Boston and West Sacramento, is looking to engineer microbes that could reduce farming's reliance on nitrogen fertilizer, which is expensive and harms the environment. (Full disclosure: Joyn Bio and this magazine are funded by the same company, Leaps by Bayer, though leapsmag is editorially independent. Also, Bayer recently acquired Monsanto, the leading producer of genetically engineered seeds and the herbicide Roundup.)
Terry Wanzek, the farmer in North Dakota, says he'd be willing to try any new technology as long as it helps his bottom line – and increases sustainability. "I'm not afraid of the food I grow," he says of his genetically modified produce. "We eat the same food, we live in the same environment, and I feel completely safe."
Only time will tell if people several decades from now feel the same way. But no matter how their food is produced, one thing is certain: those people will need to eat.
Waste smothering our oceans is worth billions – here’s what we can do with all that sh$t
There’s hardly a person out there who hasn’t heard of the Great Pacific Garbage Patch. That type of pollution is impossible to miss. It stares you in the face from pictures and videos of sea turtles with drinking straws up their noses and acres of plastic swirling in the sea.
It demands you to solve the problem—and it works. The campaign to raise awareness about plastic pollution in the oceans has resulted in new policies, including bans on microplastics in personal care products, technology to clean up the plastic, and even new plastic-like materials that are better for the environment.
But there’s a different type of pollution smothering the ocean as you read this. Unfortunately, this one is almost invisible, but no less damaging. In fact, it’s even more serious than plastic and most people have no idea it even exists. It is literally under our noses, destroying our oceans, lakes, and rivers – and yet we are missing it completely while contributing to it daily. In fact, we exacerbate it multiple times a day—every time we use the bathroom.
It is the way we do our sewage.
Most of us don’t think much about what happens after we flush the toilet. Most of us probably assume that the substances we flush go “somewhere” and are dealt with safely. But we typically don’t think about it beyond that.
Most of us also probably don’t think about what’s in the ocean or lakes we swim in. Since others are swimming, jumping in is just fine. But our waterways are far from clean. In fact, at times they are incredibly filthy. In the US, we are dumping 1.2 trillion of gallons of untreated sewage into the environment every year. Just New York City alone discharges 27 billion gallons into the Hudson River basin annually.
How does this happen? Part of it is the unfortunate side effect of our sewage system design that dates back to over a century ago when cities were smaller and fewer people were living so close together.
Back then, engineers designed the so-called “combine sewer overflow systems,” or CSOs, in which the storm water pipes are connected to the sanitary sewer pipes. In normal conditions, the sewage effluent from homes flows to the treatment plants where it gets cleaned and released into the waterways. But when it rains, the pipe system becomes so overwhelmed with water that the treatment plant can’t process it fast enough. So the treatment plant has to release the excess water through its discharge pipes—directly, without treatment, into streams, rivers and the ocean.
The 1.2 trillion gallons of CSO releases isn’t even the full picture. There are also discharges from poorly maintained septic systems, cesspools and busted pipes of the aging wastewater infrastructure. The state of Hawaii alone has 88,000 cesspools that need replacing and are currently leaking 53 million gallons of raw sewage daily into their coastal waters. You may think twice about swimming on your Hawaii vacations.
Overall, the US is facing a $271 billion backlog in wastewater infrastructure projects to update these aging systems. Across the Western world, countries are facing similar challenges with their aging sewage systems, especially the UK and European Union.
That’s not to say that other parts of the planet are in better shape. Out of the 7+ billion people populating our earth, 4.2 billion don’t have access to safe sanitation. Included in this insane number are roughly 2 billion people who have no toilet at all. Whether washed by rains or dumped directly into the waterways, a lot of this sludge pollutes the environment, the drinking water, and ultimately the ocean.
Pipes pour water onto a rocky shore in Jakarta, Indonesia.
Tom Fisk
What complicates this from an ocean health perspective is that it’s not just poop and pee that gets dumped into nearby waterways. It is all the things we put in and on our bodies and flush down our drains. That vicious mix of chemicals includes caffeine, antibiotics, antidepressants, painkillers, hormones, microplastics, cocaine, cooking oils, paint thinners, and PFAS—the forever chemicals present in everything from breathable clothing to fire retardant fabrics of our living room couches. Recent reports have found all of the above substances in fish—and then some.
Why do we allow so much untreated sewage spill into the sea? Frankly speaking, for decades scientists and engineers thought that the ocean could handle it. The mantra back then was “dilution is the solution to pollution,” which might’ve worked when there were much fewer people living on earth—but not now. Today science is telling us that this old approach doesn’t hold. That marine habitats are much more sensitive than we had expected and can’t handle the amount of wastewater we are discharging into them.
The excess nitrogen and phosphorus that the sewage (and agricultural runoff) dumps into the water causes harmful algal blooms, more commonly known as red or brown tides. The water column is overtaken by tiny algae that sucks up all the oxygen from the water, creating dead zones like the big fish kills in the Gulf of Mexico. These algae also cause public health issues by releasing gases toxic to people and animals, including dementia, neurological damage, and respiratory illness. Marshes and mangroves end up with weakened root systems and start dying off. In a wastewater modeling study I published last year, we found that 31 percent of salt marshes globally were heavily polluted with human sewage. Coral reefs get riddled with disease and overgrown by seaweed.
We could convert sewage into high-value goods. It can be used to generate electricity, fertilizer, and drinking water. The technologies not only exist but are getting better and more efficient all the time.
Moreover, by way of our sewage, we managed to transmit a human pathogen—Serratia marcescens, which causes urinary, respiratory and other infections in people—to corals! Recent reports from the Florida Keys are showing white pox disease popping up in elk horn corals caused by S.marcescens, which somehow managed to jump species. Many recent studies have documented just how common this type of pollution is across the globe.
Yet, there is some good news in that abysmal sewage flow. Just like with plastic pollution, realizing that there’s a problem is the first step, so awareness is key. That’s exactly why I co-founded Ocean Sewage Alliance last year—a nonprofit that aims to “re-potty train the world” by breaking taboos in talking about the poop and pee problem, as well as uniting experts from various key sectors to work together to end sewage pollution in coastal areas.
To end this pollution, we have to change the ways we handle our sewage. Even more exciting is that by solving the sewage problem we can create all sorts of economic benefits. In 2015, human poop was valued at $9.5 billion a year globally, which today would be $11.5 billion per year.
What would one do with that sh$t?
We could convert it into high-value goods. Sewage can be used to generate electricity, fertilizer, and drinking water. The technologies not only exist but are getting better and more efficient all the time. Some exciting examples include biodigesters and urine diversion (or peecycling) systems that can produce fertilizer and biogas, essentially natural gas. The United Nations estimates that the biogas produced from poop could provide electricity for 138 million homes. And the recovered and cleaned water can be used for irrigation, laundry and flushing toilets. It can even be refined to the point that it is safe for drinking water – just ask the folks in Orange County, CA who have been doing so for the last few decades.
How do we deal with all the human-made pollutants in our sewage? There is technology for that too. Called pyrolysis, it heats up sludge to high temperatures in the absence of oxygen, which causes most of the substances to degrade and fall apart.
There are solutions to the problems—as long as we acknowledge that the problems exist. The fact that you are reading this means that you are part of the solution already. The next time you flush your toilet, think about where this output may flow. Does your septic system work properly? Does your local treatment plant discharge raw sewage on rainy days? Can that plant implement newer technologies that can upcycle waste? These questions are part of re-potty training the world, one household at a time. And together, these households are the force that can turn back the toxic sewage tide. And keep our oceans blue.
The U.S. must fund more biotech innovation – or other countries will catch up faster than you think
The U.S. has approximately 58 percent of the market share in the biotech sector, followed by China with 11 percent. However, this market share is the result of several years of previous research and development (R&D) – it is a present picture of what happened in the past. In the future, this market share will decline unless the federal government makes investments to improve the quality and quantity of U.S. research in biotech.
The effectiveness of current R&D can be evaluated in a variety of ways such as monies invested and the number of patents filed. According to the UNESCO Institute for Statistics, the U.S. spends approximately 2.7 percent of GDP on R&D ($476,459.0M), whereas China spends 2 percent ($346,266.3M). However, investment levels do not necessarily translate into goods that end up contributing to innovation.
Patents are a better indication of innovation. The biotech industry relies on patents to protect their investments, making patenting a key tool in the process of translating scientific discoveries that can ultimately benefit patients. In 2020, China filed 1,497,159 patents, a 6.9 percent increase in growth rate. In contrast, the U.S. filed 597,172, a 3.9 percent decline. When it comes to patents filed, China has approximately 45 percent of the world share compared to 18 percent for the U.S.
So how did we get here? The nature of science in academia allows scientists to specialize by dedicating several years to advance discovery research and develop new inventions that can then be licensed by biotech companies. This makes academic science critical to innovation in the U.S. and abroad.
Academic scientists rely on government and foundation grants to pay for R&D, which includes salaries for faculty, investigators and trainees, as well as monies for infrastructure, support personnel and research supplies. Of particular interest to academic scientists to cover these costs is government support such as Research Project Grants, also known as R01 grants, the oldest grant mechanism from the National Institutes of Health. Unfortunately, this funding mechanism is extremely competitive, as applications have a success rate of only about 20 percent. To maximize the chances of getting funded, investigators tend to limit the innovation of their applications, since a project that seems overambitious is discouraged by grant reviewers.
Considering the difficulty in obtaining funding, the limited number of opportunities for scientists to become independent investigators capable of leading their own scientific projects, and the salaries available to pay for scientists with a doctoral degree, it is not surprising that the U.S. is progressively losing its workforce for innovation.
This approach affects the future success of the R&D enterprise in the U.S. Pursuing less innovative work tends to produce scientific results that are more obvious than groundbreaking, and when a discovery is obvious, it cannot be patented, resulting in fewer inventions that go on to benefit patients. Even though there are governmental funding options available for scientists in academia focused on more groundbreaking and translational projects, those options are less coveted by academic scientists who are trying to obtain tenure and long-term funding to cover salaries and other associated laboratory expenses. Therefore, since only a small percent of projects gets funded, the likelihood of scientists interested in pursuing academic science or even research in general keeps declining over time.
Efforts to raise the number of individuals who pursue a scientific education are paying off. However, the number of job openings for those trainees to carry out independent scientific research once they graduate has proved harder to increase. These limitations are not just in the number of faculty openings to pursue academic science, which are in part related to grant funding, but also the low salary available to pay those scientists after they obtain their doctoral degree, which ranges from $53,000 to $65,000, depending on years of experience.
Thus, considering the difficulty in obtaining funding, the limited number of opportunities for scientists to become independent investigators capable of leading their own scientific projects, and the salaries available to pay for scientists with a doctoral degree, it is not surprising that the U.S. is progressively losing its workforce for innovation, which results in fewer patents filed.
Perhaps instead of encouraging scientists to propose less innovative projects in order to increase their chances of getting grants, the U.S. government should give serious consideration to funding investigators for their potential for success -- or the success they have already achieved in contributing to the advancement of science. Such a funding approach should be tiered depending on career stage or years of experience, considering that 42 years old is the median age at which the first R01 is obtained. This suggests that after finishing their training, scientists spend 10 years before they establish themselves as independent academic investigators capable of having the appropriate funds to train the next generation of scientists who will help the U.S. maintain or even expand its market share in the biotech industry for years to come. Patenting should be given more weight as part of the academic endeavor for promotion purposes, or governmental investment in research funding should be increased to support more than just 20 percent of projects.
Remaining at the forefront of biotech innovation will give us the opportunity to not just generate more jobs, but it will also allow us to attract the brightest scientists from all over the world. This talented workforce will go on to train future U.S. scientists and will improve our standard of living by giving us the opportunity to produce the next generation of therapies intended to improve human health.
This problem cannot rely on just one solution, but what is certain is that unless there are more creative changes in funding approaches for scientists in academia, eventually we may be saying “remember when the U.S. was at the forefront of biotech innovation?”