The Algorithm Will See You Now
There's a quiet revolution going on in medicine. It's driven by artificial intelligence, but paradoxically, new technology may put a more human face on healthcare.
AI's usefulness in healthcare ranges far and wide.
Artificial intelligence is software that can process massive amounts of information and learn over time, arriving at decisions with striking accuracy and efficiency. It offers greater accuracy in diagnosis, exponentially faster genome sequencing, the mining of medical literature and patient records at breathtaking speed, a dramatic reduction in administrative bureaucracy, personalized medicine, and even the democratization of healthcare.
The algorithms that bring these advantages won't replace doctors; rather, by offloading some of the most time-consuming tasks in healthcare, providers will be able to focus on personal interactions with patients—listening, empathizing, educating and generally putting the care back in healthcare. The relationship can focus on the alleviation of suffering, both the physical and emotional kind.
Challenges of Getting AI Up and Running
The AI revolution, still in its early phase in medicine, is already spurring some amazing advances, despite the fact that some experts say it has been overhyped. IBM's Watson Health program is a case in point. IBM capitalized on Watson's ability to process natural language by designing algorithms that devour data like medical articles and analyze images like MRIs and medical slides. The algorithms help diagnose diseases and recommend treatment strategies.
But Technology Review reported that a heavily hyped partnership with the MD Anderson Cancer Center in Houston fell apart in 2017 because of a lack of data in the proper format. The data existed, just not in a way that the voraciously data-hungry AI could use to train itself.
The hiccup certainly hasn't dampened the enthusiasm for medical AI among other tech giants, including Google and Apple, both of which have invested billions in their own healthcare projects. At this point, the main challenge is the need for algorithms to interpret a huge diversity of data mined from medical records. This can include everything from CT scans, MRIs, electrocardiograms, x-rays, and medical slides, to millions of pages of medical literature, physician's notes, and patient histories. It can even include data from implantables and wearables such as the Apple Watch and blood sugar monitors.
None of this information is in anything resembling a standard format across and even within hospitals, clinics, and diagnostic centers. Once the algorithms are trained, however, they can crunch massive amounts of data at blinding speed, with an accuracy that matches and sometimes even exceeds that of highly experienced doctors.
Genome sequencing, for example, took years to accomplish as recently as the early 2000s. The Human Genome Project, the first sequencing of the human genome, was an international effort that took 13 years to complete. In April of this year, Rady Children's Institute for Genomic Medicine in San Diego used an AI-powered genome sequencing algorithm to diagnose rare genetic diseases in infants in about 20 hours, according to ScienceDaily.
"Patient care will always begin and end with the doctor."
Dr. Stephen Kingsmore, the lead author of an article published in Science Translational Medicine, emphasized that even though the algorithm helped guide the treatment strategies of neonatal intensive care physicians, the doctor was still an indispensable link in the chain. "Some people call this artificial intelligence, we call it augmented intelligence," he says. "Patient care will always begin and end with the doctor."
One existing trend is helping to supply a great amount of valuable data to algorithms—the electronic health record. Initially blamed for exacerbating the already crushing workload of many physicians, the EHR is emerging as a boon for algorithms because it consolidates all of a patient's data in one record.
Examples of AI in Action Around the Globe
If you're a parent who has ever taken a child to the doctor with flulike symptoms, you know the anxiety of wondering if the symptoms signal something serious. Kang Zhang, M.D., Ph.D., the founding director of the Institute for Genomic Medicine at the University of California at San Diego, and colleagues developed an AI natural language processing model that used deep learning to analyze the EHRs of 1.3 million pediatric visits to a clinic in Guanzhou, China.
The AI identified common childhood diseases with about the same accuracy as human doctors, and it was even able to split the diagnoses into two categories—common conditions such as flu, and serious, life-threatening conditions like meningitis. Zhang has emphasized that the algorithm didn't replace the human doctor, but it did streamline the diagnostic process and could be used in a triage capacity when emergency room personnel need to prioritize the seriously ill over those suffering from common, less dangerous ailments.
AI's usefulness in healthcare ranges far and wide. In Uganda and several other African nations, AI is bringing modern diagnostics to remote villages that have no access to traditional technologies such as x-rays. The New York Times recently reported that there, doctors are using a pocket-sized, hand-held ultrasound machine that works in concert with a cell phone to image and diagnose everything from pneumonia (a common killer of children) to cancerous tumors.
The beauty of the highly portable, battery-powered device is that ultrasound images can be uploaded on computers so that physicians anywhere in the world can review them and weigh in with their advice. And the images are instantly incorporated into the patient's EHR.
Jonathan Rothberg, the founder of Butterfly Network, the Connecticut company that makes the device, told The New York Times that "Two thirds of the world's population gets no imaging at all. When you put something on a chip, the price goes down and you democratize it." The Butterfly ultrasound machine, which sells for $2,000, promises to be a game-changer in remote areas of Africa, South America, and Asia, as well as at the bedsides of patients in developed countries.
AI algorithms are rapidly emerging in healthcare across the U.S. and the world. China has become a major international player, set to surpass the U.S. this year in AI capital investment, the translation of AI research into marketable products, and even the number of often-cited research papers on AI. So far the U.S. is still the leader, but some experts describe the relationship between the U.S. and China as an AI cold war.
"The future of machine learning isn't sentient killer robots. It's longer human lives."
The U.S. Food and Drug Administration expanded its approval of medical algorithms from two in all of 2017 to about two per month throughout 2018. One of the first fields to be impacted is ophthalmology.
One algorithm, developed by the British AI company DeepMind (owned by Alphabet, the parent company of Google), instantly scans patients' retinas and is able to diagnose diabetic retinopathy without needing an ophthalmologist to interpret the scans. This means diabetics can get the test every year from their family physician without having to see a specialist. The Financial Times reported in March that the technology is now being used in clinics throughout Europe.
In Copenhagen, emergency service dispatchers are using a new voice-processing AI called Corti to analyze the conversations in emergency phone calls. The algorithm analyzes the verbal cues of callers, searches its huge database of medical information, and provides dispatchers with onscreen diagnostic information. Freddy Lippert, the CEO of EMS Copenhagen, notes that the algorithm has already saved lives by expediting accurate diagnoses in high-pressure situations where time is of the essence.
Researchers at the University of Nottingham in the UK have even developed a deep learning algorithm that predicts death more accurately than human clinicians. The algorithm incorporates data from a huge range of factors in a chronically ill population, including how many fruits and vegetables a patient eats on a daily basis. Dr. Stephen Weng, lead author of the study, published in PLOS ONE, said in a press release, "We found machine learning algorithms were significantly more accurate in predicting death than the standard prediction models developed by a human expert."
New digital technologies are allowing patients to participate in their healthcare as never before. A feature of the new Apple Watch is an app that detects cardiac arrhythmias and even produces an electrocardiogram if an abnormality is detected. The technology, approved by the FDA, is helping cardiologists monitor heart patients and design interventions for those who may be at higher risk of a cardiac event like a stroke.
If having an algorithm predict your death sends a shiver down your spine, consider that algorithms may keep you alive longer. In 2018, technology reporter Tristan Greene wrote for Medium that "…despite the unending deluge of panic-ridden articles declaring AI the path to apocalypse, we're now living in a world where algorithms save lives every day. The future of machine learning isn't sentient killer robots. It's longer human lives."
The Risks of AI Compiling Your Data
To be sure, the advent of AI-infused medical technology is not without its risks. One risk is that the use of AI wearables constantly monitoring our vital signs could turn us into a nation of hypochondriacs, racing to our doctors every time there's a blip in some vital sign. Such a development could stress an already overburdened system that suffers from, among other things, a shortage of doctors and nurses. Another risk has to do with the privacy protections on the massive repository of intimately personal information that AI will have on us.
In an article recently published in the Journal of the American Medical Association, Australian researcher Kit Huckvale and colleagues examined the handling of data by 36 smartphone apps that assisted people with either depression or smoking cessation, two areas that could lend themselves to stigmatization if they fell into the wrong hands.
Out of the 36 apps, 33 shared their data with third parties, despite the fact that just 25 of those apps had a privacy policy at all and out of those, only 23 stated that data would be shared with third parties. The recipients of all that data? It went almost exclusively to Facebook and Google, to be used for advertising and marketing purposes. But there's nothing to stop it from ending up in the hands of insurers, background databases, or any other entity.
Even when data isn't voluntarily shared, any digital information can be hacked. EHRs and even wearable devices share the same vulnerability as any other digital record or device. Still, the promise of AI to radically improve efficiency and accuracy in healthcare is hard to ignore.
AI Can Help Restore Humanity to Medicine
Eric Topol, director of the Scripps Research Translational Institute and author of the new book Deep Medicine, says that AI gives doctors and nurses the most precious gift of all: time.
Topol welcomes his patients' use of the Apple Watch cardiac feature and is optimistic about the ways that AI is revolutionizing medicine. He says that the watch helps doctors monitor how well medications are working and has already helped to prevent strokes. But in addition to that, AI will help bring the humanity back to a profession that has become as cold and hard as a stainless steel dissection table.
"When I graduated from medical school in the 1970s," he says, "you had a really intimate relationship with your doctor." Over the decades, he has seen that relationship steadily erode as medical organizations demanded that doctors see more and more patients within ever-shrinking time windows.
"Doctors have no time to think, to communicate. We need to restore the mission in medicine."
In addition to that, EHRs have meant that doctors and nurses are getting buried in paperwork and administrative tasks. This is no doubt one reason why a recent study by the World Health Organization showed that worldwide, about 50 percent of doctors suffer from burnout. People who are utterly exhausted make more mistakes, and medical clinicians are no different from the rest of us. Only medical mistakes have unacceptably high stakes. According to its website, Johns Hopkins University recently announced that in the U.S. alone, 250,000 people die from medical mistakes each year.
"Doctors have no time to think, to communicate," says Topol. "We need to restore the mission in medicine." AI is giving doctors more time to devote to the thing that attracted them to medicine in the first place—connecting deeply with patients.
There is a real danger at this juncture, though, that administrators aware of the time-saving aspects of AI will simply push doctors to see more patients, read more tests, and embrace an even more crushing workload.
"We can't leave it to the administrators to just make things worse," says Topol. "Now is the time for doctors to advocate for a restoration of the human touch. We need to stand up for patients and for the patient-doctor relationship."
AI could indeed be a game changer, he says, but rather than squander the huge benefits of more time, "We need a new equation going forward."
The Science of Why Adjusting to Omicron Is So Tough
We are sticking our heads into the sand of reality on Omicron, and the results may be catastrophic.
Omicron is over 4 times more infectious than Delta. The Pfizer two-shot vaccine offers only 33% protection from infection. A Pfizer booster vaccine does raises protection to about 75%, but wanes to around 30-40 percent 10 weeks after the booster.
The only silver lining is that Omicron appears to cause a milder illness than Delta. Yet the World Health Organization has warned about the “mildness” narrative.
That’s because the much faster disease transmission and vaccine escape undercut the less severe overall nature of Omicron. That’s why hospitals have a large probability of being overwhelmed, as the Center for Disease Control warned, in this major Omicron wave.
Yet despite this very serious threat, we see the lack of real action. The federal government tightened international travel guidelines and is promoting boosters. Certainly, it’s crucial to get as many people to get their booster – and initial vaccine doses – as soon as possible. But the government is not taking the steps that would be the real game-changers.
Pfizer’s anti-viral drug Paxlovid decreases the risk of hospitalization and death from COVID by 89%. Due to this effectiveness, the FDA approved Pfizer ending the trial early, because it would be unethical to withhold the drug from people in the control group. Yet the FDA chose not to hasten the approval process along with the emergence of Omicron in late November, only getting around to emergency authorization in late December once Omicron took over. That delay meant the lack of Paxlovid for the height of the Omicron wave, since it takes many weeks to ramp up production, resulting in an unknown number of unnecessary deaths.
We humans are prone to falling for dangerous judgment errors called cognitive biases.
Widely available at-home testing would enable people to test themselves quickly, so that those with mild symptoms can quarantine instead of infecting others. Yet the federal government did not make tests available to patients when Omicron emerged in late November. That’s despite the obviousness of the coming wave based on the precedent of South Africa, UK, and Denmark and despite the fact that the government made vaccines freely available. Its best effort was to mandate that insurance cover reimbursements for these kits, which is way too much of a barrier for most people. By the time Omicron took over, the federal government recognized its mistake and ordered 500 million tests to be made available in January. However, that’s far too late. And the FDA also played a harmful role here, with its excessive focus on accuracy going back to mid-2020, blocking the widespread availability of cheap at-home tests. By contrast, Europe has a much better supply of tests, due to its approval of quick and slightly less accurate tests.
Neither do we see meaningful leadership at the level of employers. Some are bringing out the tired old “delay the office reopening” play. For example, Google, Uber, and Ford, along with many others, have delayed the return to the office for several months. Those that already returned are calling for stricter pandemic measures, such as more masks and social distancing, but not changing their work arrangements or adding sufficient ventilation to address the spread of COVID.
Despite plenty of warnings from risk management and cognitive bias experts, leaders are repeating the same mistakes we fell into with Delta. And so are regular people. For example, surveys show that Omicron has had very little impact on the willingness of unvaccinated Americans to get a first vaccine dose, or of vaccinated Americans to get a booster. That’s despite Omicron having taken over from Delta in late December.
What explains this puzzling behavior on both the individual and society level? We humans are prone to falling for dangerous judgment errors called cognitive biases. Rooted in wishful thinking and gut reactions, these mental blindspots lead to poor strategic and financial decisions when evaluating choices.
These cognitive biases stem from the more primitive, emotional, and intuitive part of our brains that ensured survival in our ancestral environment. This quick, automatic reaction of our emotions represents the autopilot system of thinking, one of the two systems of thinking in our brains. It makes good decisions most of the time but also regularly makes certain systematic thinking errors, since it’s optimized to help us survive. In modern society, our survival is much less at risk, and our gut is more likely to compel us to focus on the wrong information to make decisions.
One of the biggest challenges relevant to Omicron is the cognitive bias known as the ostrich effect. Named after the myth that ostriches stick their heads into the sand when they fear danger, the ostrich effect refers to people denying negative reality. Delta illustrated the high likelihood of additional dangerous variants, yet we failed to pay attention to and prepare for such a threat.
We want the future to be normal. We’re tired of the pandemic and just want to get back to pre-pandemic times. Thus, we greatly underestimate the probability and impact of major disruptors, like new COVID variants. That cognitive bias is called the normalcy bias.
When we learn one way of functioning in any area, we tend to stick to that way of functioning. You might have heard of this as the hammer-nail syndrome: when you have a hammer, everything looks like a nail. That syndrome is called functional fixedness. This cognitive bias causes those used to their old ways of action to reject any alternatives, including to prepare for a new variant.
Our minds naturally prioritize the present. We want what we want now, and downplay the long-term consequences of our current desires. That fallacious mental pattern is called hyperbolic discounting, where we excessively discount the benefits of orienting toward the future and focus on the present. A clear example is focusing on the short-term perceived gains of trying to return to normal over managing the risks of future variants.
The way forward into the future is to defeat cognitive biases and avoid denying reality by rethinking our approach to the future.
The FDA requires a serious overhaul. It’s designed for a non-pandemic environment, where the goal is to have a highly conservative, slow-going, and risk-averse approach so that the public feels confident trusting whatever it approved. That’s simply unacceptable in a fast-moving pandemic, and we are bound to face future pandemics in the future.
The federal government needs to have cognitive bias experts weigh in on federal policy. Putting all of its eggs in one basket – vaccinations – is not a wise move when we face the risks of a vaccine-escaping variant. Its focus should also be on expediting and prioritizing anti-virals, scaling up cheap rapid testing, and subsidizing high-filtration masks.
For employers, instead of dictating a top-down approach to how employees collaborate, companies need to adopt a decentralized team-led approach. Each individual team leader of a rank-and-file employee team should determine what works best for their team. After all, team leaders tend to know much more of what their teams need, after all. Moreover, they can respond to local emergencies like COVID surges.
At the same time, team leaders need to be trained to integrate best practices for hybrid and remote team leadership. Companies transitioned to telework abruptly as part of the March 2020 lockdowns. They fell into the cognitive bias of functional fixedness and transposed their pre-existing, in-office methods of collaboration on remote work. Zoom happy hours are a clear example: The large majority of employees dislike them, and research shows they are disconnecting, rather than connecting.
Yet supervisors continue to use them, despite the existence of much better methods of facilitating colalboration, which have been shown to work, such as virtual water cooler discussions, virtual coworking, and virtual mentoring. Leaders also need to facilitate innovation in hybrid and remote teams through techniques such as virtual asynchronous brainstorming. Finally, team leaders need to adjust performance evaluation to adapt to the needs of hybrid and remote teams.
On an individual level, people built up certain expectations during the first two years of the pandemic, and they don't apply with Omicron. For example, most people still think that a cloth mask is a fine source of protection. In reality, you really need an N-95 mask, since Omicron is so much more infectious. Another example is that many people don’t realize that symptom onset is much quicker with Omicron, and they aren’t prepared for the consequences.
Remember that we have a huge number of people who are asymptomatic, often without knowing it, due to the much higher mildness of Omicron. About 8% of people admitted to hospitals for other reasons in San Francisco test positive for COVID without symptoms, which we can assume translates for other cities. That means many may think they're fine and they're actually infectious. The result is a much higher chance of someone getting many other people sick.
During this time of record-breaking cases, you need to be mindful about your internalized assumptions and adjust your risk calculus accordingly. So if you can delay higher-risk activities, January and February might be the time to do it. Prepare for waves of disruptions to continue over time, at least through the end of February.
Of course, you might also choose to not worry about getting infected. If you are vaccinated and boosted, and do not have any additional health risks, you are very unlikely to have a serious illness due to Omicron. You can just take the small risk of a serious illness – which can happen – and go about your daily life. If doing so, watch out for those you care about who do have health concerns, since if you infect them, they might not have a mild case even with Omicron.
In short, instead of trying to turn back the clock to the lost world of January 2020, consider how we might create a competitive advantage in our new future. COVID will never go away: we need to learn to live with it. That means reacting appropriately and thoughtfully to new variants and being intentional about our trade-offs.
Picture this: your medical first responder descends from the sky like a friendly, unmanned starship. Hovering over your door, it drops a device with recorded instructions to help a bystander jumpstart your heart that has stopped. This, after the 911 call but before the ambulance arrives.
This is exactly what happened on Dec. 9, 2021, when a 71-year-old man in Sweden suffered a cardiac arrest while shoveling snow. A passerby, seeing him collapse, called for an ambulance. In just over three minutes, a drone swooped overhead carrying an Automated External Defibrillator (AED). The patient was revived on the spot before the ambulance arrived to rush him to the hospital where he made a full recovery. The revolutionary technology saved his life.
In 2020, Sweden became the first country to deploy drones carrying AEDs to people in sudden cardiac arrest, when survival odds depend on getting CPR and an electric shock to the heart from a defibrillator within 5 minutes—nearly always before emergency responders arrive.
In the U.S. alone, more than 356,00 cardiac arrests occur outside of hospitals each year; 9 out of 10 of these people die. Plus, the risk of permanent brain injury increases after the first three minutes the heart stops beating. After nine minutes, damage to the brain and other organs is usually severe and irreversible.
“The fundamental technology can be applied to a lot of other emergency situations.”
Once the stuff of sci fi, the delivery of life-saving medical equipment by drone will be commonplace in the near future, experts say. The Swedish team is hailing their study as the first-ever proof of concept for using drones in emergency medicine. The drones arrived only two minutes before the ambulance in most cases but that’s significant during cardiac arrest when survival rates drop 10% every minute.
Since that 2020 pilot, the drones have been tweaked for better performance. They can travel faster and after dark today, and route planning has been optimized, says Mats Sällström, chief executive officer of Everdrone, the technical and development guru for the project, who is collaborating with researchers at the Karolinska Institutet and Sweden’s national emergency call center, SOS Alarm.
When an emergency call comes in, the operator determines if it’s a cardiac arrest. If so, the caller gets CPR instructions while an ambulance is summoned and a control center is notified automatically to dispatch a drone. If conditions allow, the drone flies to the scene via a GPS signal from the caller’s cell phone. Once dropped at the location, the AED beeps to signal its arrival. The AED talks the user through every step when it’s opened while the emergency operator offers support.
Public health officials have tried placing AEDs in public spaces like airports and shopping malls for quick access but the results have been disappointing. Poor usage rates of 2% to 3% have been attributed to bystanders not knowing where they are, not wanting to leave victims, or the site being closed when needed.
Some people fear they could harm the victim or won’t know how to use the AED but not to worry, says Wayne Rosamond, a professor of epidemiology at the University of North Carolina Gillings School of Global Public Health, who studies AED drones. “[The device] won’t shock someone unless they need to be shocked,” he says.
The AED instructions are foolproof, echoes Timothy Chan, professor of engineering at the University of Toronto, who has been building optimization models to design drone networks in Ontario, Canada. All the same, he says, community education will be essential for success. “People have more awareness about drones than AEDs,” he’s found.
Rosamond and Chan are among scientists around the world inspired by Sweden to do their own modeling, simulation and feasibility studies on drone-delivered AEDs.
“Scandinavia is way ahead of us,” notes Rosamond. “There is a tremendous amount of regulatory control over flying drones in the U.S.” In addition to Federal Aviation Administration restrictions, medical drones in the U.S. must comply with HIPAA laws surrounding confidentiality and security of patient information.
To date, Sweden has expanded drone operations and home bases around the country and throughout Europe. Since April 2021, the team has deployed 1-4 drones per week, says Sällström.
Certain weather conditions remain an obstacle. The drones cannot be dispatched safely in rain, snow and heavy wind. Close, heavily populated neighborhoods with high-rise buildings also present challenges.
“Semi-urban areas with residential low-rise [1-5 stories] buildings are the sweet spot for our operations,” Sällström says. “However, as the system matures, we will pursue operations in practically all-weather conditions and also in densely populated areas.” The team is also trying to improve drone speed and battery life to enable flights to rural and remote areas in the future.
Chan predicts that delivering AEDs via drone will be a regular occurrence in five years. In addition, he says, “The fundamental technology can be applied to a lot of other emergency situations.”
Drones could carry medications for anaphylactic shock and opioid overdose, or bring tourniquets and bandages to trauma victims, Chan suggests. Other researchers are looking at the delivery of glucose for low blood sugar emergencies and the transport of organs for transplant.
The sky is no longer the limit.